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Abstract. This invited paper reviews a framework to assist in mitigating
societal risks that software can pose. This is to promote effective human
oversight, which is a central requirement enforced by the European Union’s
upcoming AI Act [29]. The paper advertises fragments of an upcoming
journal publication [12], and as such is itself low in genuine originality. Yet
it offers a specific perspective on that original work. Extrapolating earlier
work on software doping, we report on the combination of established
techniques for runtime monitoring and for probabilistic falsification to
arrive at a black-box analysis technique for identifying undesired effects
of software. We describe its application to high-risk systems that evaluate
humans in a possibly unfair or discriminating way. The approach can
assist humans-in-the-loop to make better informed and more responsible
decisions. Our technical contribution is complemented by juridically,
philosophically, and psychologically informed perspectives on the potential
problems caused by AI systems.
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1 Introduction

The lack of transparency of many AI-supported systems raises significant societal
risks, including the potential for unfair or biased decision-making. This can
lead to morally and instrumentally problematic outcomes, to breaches of legal
obligations, to unfavourable societal effects, and to the undermining of public
trust and acceptance of AI technologies. This is especially true for high-risk
applications, which include credit approval [63], decisions on visa applications
[54], admissions to higher education [85,19], screening of individuals in predictive
policing [35], selection in HR [60,61,62], judicial decisions (as with COMPAS
[21,23,3,47]), tenant screening [76], and more. In many of these areas, there are
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legitimate interests and valid reasons for using AI technology, although the risks
associated with their use to date are manifold.

One frequently proposed remedy to the problems posed by the high-risk
uses of opaque AI is human oversight [36,53,82] where a human expert is to
make sure that the system operates in accordance with the desiderata set out by
other human stakeholders. By now, the requirement for human oversight is even
reflected in law, such as the AI Act of the European Union [29] that is about to
be adopted or certain US state laws [84]. However, human oversight is not an
unconditional remedy for any and all problems, and the effectiveness of a human
overseer can be greatly reduced when certain conditions fail to be met. Notably,
if the human overseer cannot gain enough knowledge about the system, their
oversight will not achieve the desired aims. For example, if the overseer lacks any
means to decide if a system made an unfair decision, they will have no reliable
way of intervening when the system is, in fact, unfair. This is the problem that
this paper has set out to tackle.

2 Setting the Stage

The challenge to overcome can best be introduced by an exemplary, albeit
hypothetical admission system for higher education (inspired by [85,19]).

Example 1. A large university assigns scores to applicants aiming to enter
their computer science PhD program. The scores are computed using an
automated, model-based procedure P, which is based on three data points:
the position of the applicant’s last graduate institution in an official,
subject-specific ranking, the applicant’s most recent grade point average
(GPA), and their score in a subject-specific standardised test taken as part
of the application procedure. The system then automatically computes
a score for the candidate based on an estimation of how successful it
expects them to be as students. A dedicated university employee, Unica
is in charge of overseeing the individual outcomes of P and desk-reject
candidates whose scores are below a certain, predefined threshold – unless
she finds problems with P’s scoring. The university pays especial attention
to fairness in the scoring procedure, so Unica has to watch out for any
signs of potential unfairness. If she suspects unfairness, Unica must decide
on the case manually. Without any additional support, Unica, as human
overseer in the loop, must manually check all cases for signs of unfairness
as they are processed. This can be a tedious, complicated, and error-prone
task and, as such, constitutes an impediment to the assumed scalability of
the automated scoring process for high numbers of applicants. Therefore,
she requires tools that assist her in detecting when something is off about
the scoring of individual applicants.

Sometimes, we cannot mitigate all risks of high-risk AI in advance by technical
measures, and some risk mitigation requires trade-off decisions involving features
that are either impossible or difficult to operationalise and formalise. This is why



it is arguably essential that a human effectively oversees the system (which is
also emphasised by several institutions such as UNESCO [82] and the European
High Level Expert Group [36]), as well as in applicable law (such as the European
AI Act [29] or the Washington State facial recognition law [84]). Effective human
oversight, however, is only possible with the appropriate technical measures that
allow human overseers to better understand the system at runtime [46,45]. From
a technical point of view, this raises the pressing question of what such technical
measures can and ought to look like to actually enable humans to live up to
their responsibilities. Our contribution is intended to bridge the gap between the
normative expectations of law and society and the current reality of technological
design. Developing such a technical measure, a software tool supporting Unica,
is thus the prime problem we focus on.

Our solution is based on the work developed in [12], in terms of a runtime
monitor that provides automated assistance (based on [14]) to the human oversight
and itself is based on a probabilistic falsification technique (introduced in [15]).
All this is rooted in a suitable formal basis for rolling out runtime monitors for
such high-risk systems that can detect and flag discrimination or unfair treatment
of humans. We live up to the societal complexity of this example and provide
an interdisciplinary situation analysis and an interdisciplinary assessment of the
solution we shall propose.

The contributions echoed here from the original article [12] are twofold.

Promoting effective human oversight. We discuss and demonstrate a con-
tribution to effective human oversight of high-risk systems, as required by
the AI Act. The hypothetical university admission scenario introduced above
will serve as a demonstrator for shedding light on the applicability of our
approach and on the principles behind it. On a conceptual level, we consider
it important to clarify which duties come with the usage of such a system;
from a legal perspective, particularly considering the AI Act, substantiated by
considering the ethical dimension from a philosophical perspective, and from
a psychological perspective, particularly deliberating on how the overseeing
can become effective.

Falsification-based test input generation. On a technical level, we describe
how recent work [13] on a formal framework for robust cleanness can be
combined with a probabilistic falsification technique to identify problems
of fairness and discrimination in AI usages akin to the admission scenario
described above. We describe a search procedure that aims at generating
synthetic data of (hypothetical) applicants whose parameters are very similar
to the individuals currently looked at but who are classified differently by the
AI. The approach uses a fairness test procedure, and the problem then is to
effectuate test input selection in a meaningful manner. In this, probabilistic
falsification supports the testing procedure by guiding it towards test inputs
that make the fairness tests likely to fail. Altogether, we arrive at a runtime
monitor for individual fairness based on probabilistic falsification. This we
consider as a core component for assisting humans who need to oversee
scenarios as the one described above.



While the contents of this paper are subsumed by the original contents of [12], the
former has been rearranged in order to directly put in focus the use of the above
contributions for the benefit of human oversight. In this respect, this paper offers
a distinct value to the interested reader.

3 Fairness, Discrimination, Explainability

Our contribution draws on and adds to three vibrant topics of current research,
namely Explainable AI (XAI), AI Fairness, and Discrimination.

Explainable AI. Many of the most successful AI systems today are black boxes
of some kind [8]. Accordingly, the field of “Explainable AI” [32] focuses on the
question of how to provide users (and possibly other stakeholders) with more
information via several key perspicuity properties [78] of these systems and
their outputs to make them understand these systems and their outputs in ways
necessary to meet various desiderata [55,49,44,4,59,20]. The concrete expectations
and promises associated with various XAI methods are manifold. Among them
are enabling warranted trust in systems [69,73,39,42,9], increasing human-system
decision-making performance [43], for instance through increasing human situation
awareness when operating systems [71], enabling responsible decision-making
and effective human oversight [10,51,75], as well as identifying and reducing
discrimination [49]. It often remains unclear what kind of explanations are
generated by the various explainability methods and how they are meant to
contribute to the fulfilment of the desiderata, even though these questions have
become the subject of systematic and interdisciplinary research [46,44].

Our approach can be taxonomised along at least two different distinc-
tions [69,68,56,46,77]: First, it is model-agnostic (not model-specific), i.e., it
is not tailored to a particular class of models but operates on observable be-
haviour – the inputs and outputs of the model. Second, our method is a local
method (not global), i.e., it is meant to shed light on certain outputs rather than
the system as a whole.

Fairness. Fairness, discrimination, justice, equal opportunity, bias, prejudice,
and many more such concepts are part of a meaningfully interrelated cluster that
has been analysed and dissected for millennia [5,6]. Many fields are traditionally
concerned with the concepts of fairness and discrimination, ranging from philoso-
phy [5,6,25,31,66,65,67] to legal sciences [18,83,34,81], to psychology [37,88], to
sociology [2,40], to political theory [66], to economics [33]. Nowadays, it has also
become a technological topic that calls for cross-disciplinary perspectives [30]. It
is widely recognised that discrimination by unfair classification and regression
models is one particularly important risk of AI-supported decision making. As a
result, a colourful zoo of different operationalisations of unfairness has emerged
[83,64], which should be seen less as a set of competing approaches and more as
mutually complementary [31].



With regard to fairness, two distinctions are especially relevant to our work.
First, one distinction is made between individual fairness, i.e., that similar indi-
viduals are treated similarly [24], and group fairness, i.e., that there is adequate
group parity [16]. Measures of individual fairness are often close to the Aris-
totelian dictum to treat like cases alike [5,6]. In a sense, operationalisations
of individual fairness are robustness measures [79,17], but instead of requiring
robustness with respect to noise or adversarial attacks, measures of individual
fairness, such as the one by Dwork et al. [24], call for robustness with respect to
highly context-dependent differences between representations of human individu-
als. Second, recent work from the field of law [83] suggests to differentiate between
bias preserving and bias transforming fairness metrics. Bias preserving fairness
metrics seek to avoid adding new bias. For such metrics, historic performances
are the benchmarks for models, with equivalent error rates for each group being
a constraint. In contrast, bias transforming metrics do not accept existing bias as
a given or neutral starting point but aim at adjustment. Therefore, they require
to make a “positive normative choice” [83], i.e., to actively decide which biases
the system is allowed to exhibit and which it must not exhibit.

Over the years, many concrete approaches have been suggested to foster differ-
ent kinds of fairness in artificial systems, especially in AI-based ones [52,49,83,86,64].
Yet, to the best of our knowledge, an approach like ours is still missing. One
of the approaches that are closest to ours, namely that by John et al. [41], is
not local and, therefore, not suitable for runtime monitoring. Also, it is not
model-agnostic. So, to the best of our knowledge, our approach provides a new
contribution to the debate on unfairness detection.

It is important to note/recognise that our approach can only be understood
as part of a more holistic approach to preventing or reducing unfairness. After
all, there are many sources of unfairness [7] (also see Figure 1). Therefore, not
every technical measure can detect every kind of unfairness, and eliminating
one source of unfairness might not be sufficient to eliminate all unfairness. Our
approach tackles only unfairness introduced by the system, but not other kinds
of unfairness.
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Fig. 1: Sketch of different origins of unfairness in a decision process supported by
a system; the dotted box indicates which unfairness our monitoring targets.



Discrimination. We understand discrimination as dissimilar treatment of similar
cases or similar treatment of dissimilar cases without justifying reason. This
definition can also be found in the law [28, §43]. Our work exclusively focuses on
discrimination qua dissimilar treatment of similar cases. Discrimination requires
a thoughtful and largely not formalisable consideration of “justifying reason.”
However, we will exploit the relation between discrimination and fairness: Unfair-
ness in a system can arguably be a good proxy of discrimination – even though
not every unfair treatment by a system necessarily constitutes discrimination
(especially not in the legal sense). Thus, a tool that highlights cases of unfairness
in a system can be highly instrumental in detecting discriminatory features of a
system. It is not viable, though, to let such a tool rule out unfair treatment fully
automatically without human oversight since there could be justifying reasons to
treat two similar inputs in a dissimilar way.

4 Individual Fairness of Systems Evaluating Humans

Against the contextual backdrop as described above, we now return to the
characteristics of Example 1, where Unica uses an AI system that is supposed to
assist her with the selection of applicants for a hypothetical university. A usable
fairness analysis can happen no later than at runtime since Unica needs to make
a timely decision on whether to include the applicant in further considerations.
We describe technical measures that help mitigate this challenge by providing her
with information from an individual fairness analysis in a suitable, purposeful,
and expedient way. To this end, we propose a formal definition for individual
fairness extending the one by Dwork et al. [24], extrapolating earlier work on
robust cleanness [11]. We develop a runtime monitor that analyses every output of
P immediately after P’s decision, which strategically searches for unfair treatment
of a particular individual by comparing them to relevant hypothetical alternative
individuals so as to provide a fairness assessment in a timely manner.

4.1 Individual Fairness

Unica from Example 1 should be able to detect individual unfairness. An oper-
ationalisation thereof by Dwork et al. [24] is based on the Lipschitz condition
to enforce that similar individuals are treated similarly. To measure similarity,
they assume the existence of distance functions measuring the distances between
system inputs as well as between system outputs. A function d : X ×X → R≥0

is a distance function if and only if it satisfies d(x, x) = 0 and d(x, y) = d(y, x).
In this, R≥0 := {x ∈ R | x ≥ 0} ∪ {∞} is the set of the non-negative extended
real numbers. Two such functions are assumed to exist, namely dIn operating on
the set In of system inputs, and similarly dOut for system output (from set Out).
In the example, the inputs are the data vectors representing human individuals,
and outputs correspond to the scores produced.



Dwork et al. [24] assume that both distance functions perfectly measure
distances between individuals5 and between outputs of the system, respectively,
but admit that in practice these distance functions are only approximations of
a ground truth at best. They suggest that distance measures might be learned,
but there is no one-size-fits-all approach to selecting distance measures. Indeed,
obtaining such distance metrics is a topic of active research [87,57,38]. Addition-
ally, the Lipschitz condition assumes a Lipschitz constant L to establish a linear
constraint between input and output distances.

Definition 1. A program P : In → Out is Lipschitz-fair w.r.t. dIn : In× In → R,
dOut : Out×Out → R, and a Lipschitz constant L, if and only if for all i1, i2 ∈ In,
dOut(P(i1), P (i2)) ≤ L · dIn(i1, i2).

Lipschitz-fairness comes with some restrictions that limit its suitability for
practical application:

dIn-dOut-relation: High-risk systems are typically complex systems and ask
for more complex fairness constraints than the linearly bounded output
distances provided by the Lipschitz condition. For example, using the Lipschitz
condition prevents us from allowing small local jumps in the output and, at
the same time, from forbidding jumps of the same rate of increase over larger
ranges of the input space.

Input relevance: The condition quantifies over the entire input domain of a
program. This overlooks two things: first, it is questionable whether each input
in such a domain is plausible as a representation of a real-world individual.
But whether a system is unfair for two implausible and purely hypothetical
inputs is largely irrelevant in practice. Secondly, it also ignores that mere
potential unfair treatment is at most a threat, not necessarily already a
harm [70]. Therefore, even with a restriction to only plausible applicants,
the analysis might take into account more inputs than needed for many real-
world applications. What is important in practice is the ability to determine
whether actual applicants are treated unfairly – and for this, it is often not
needed to look at the entire input domain.

Monitorability: In a monitoring scenario with the Lipschitz condition in place,
a fixed input i1 must be compared to potentially all other inputs i2. Since the
input domain of the system can be arbitrarily large, the Lipschitz condition
is not yet suitable for monitoring in practice (for a related point see John et
al. [41]).

We propose a notion of individual fairness that, instead of the constant L, uses
a function f to relate input distances and output distances in a more general way.

5 For easier readability, we will not distinguish between individuals and their repre-
sentations unless this distinction is relevant in the specific context. It is nevertheless
important to note that inputs are not individuals, but only representations of indi-
viduals, since an input could inadequately represent an individual and therefore be
unfair.



Further, we make it explicit that dIn, dOut, and f are parameters of the fairness
notion by encapsulating them in triples F = ⟨dIn, dOut, f⟩ that we call fairness
contracts. Our fairness definition evaluates fairness for a finite set of individuals
I ⊆ In (e.g., a set of applicants). A fairness contract specifies certain fairness
parameters for a concrete context or situation. Such parameters should generally
not already include I to avoid introducing new unfairness through the monitor by
tailoring it to specific inputs individually or by treating certain inputs differently
from others. We can operationalise6 individual fairness as follows:

Definition 2. A program P : In → Out is individually fair for a set I ⊆ In of
actual inputs w.r.t. a fairness contract F = ⟨dIn, dOut, f⟩, if and only if for all
i ∈ I and all i′ ∈ In, dOut(P(i),P(i

′)) ≤ f(dIn(i, i
′)).

The idea behind individual fairness is that every individual in set I is
compared to potential other inputs in the domain of P. These other inputs do
not necessarily need to be in I, nor do these inputs need to have “physical
counterparts” in the real world. Driven by the insights of the Input relevance
restriction of Lipschitz-fairness, we explicitly distinguish inputs in the following
and will call inputs that are given to P by a user actual inputs, denoted ia, and
call inputs to which such ia are compared synthetic inputs, denoted is. Actual
inputs typically7 are inputs that have a real-world counterpart, while this might
or might not be true for synthetic inputs.

At first glance, it might seem sufficient to use only actual inputs. This way,
for example, Unica would find out whether one applicant was treated unfairly
relative to another applicant. This, however, is not enough: Unica is after any
unfairness of the system towards a certain applicant, and not just one relative to
some other, actual applicant. At the same time, Unica cannot and should not
expect that, coincidentally, a candidate has applied who has the very specific
properties needed to unveil the system’s unfairness towards another candidate.
Hence, synthetic inputs are worthwhile to be considered.

Notice that individual fairness is a conservative extension of Lipschitz-fairness.
With I = In and f(x) = L · x, individual fairness mimics Lipschitz-fairness.
Wachter et al. [83] classify the Lipschitz-fairness of Dwork et al. [24] as bias-
transforming. As we generalise this and introduce no element that has to be
regarded as bias-preserving, our approach arguably is bias-transforming, too.

Individual fairness, with its function f , provides a powerful tool to model
complex fairness constraints. How such an f is defined has a profound impact

6 Definition 2 is not a definition of individual fairness in the strict sense, since individual
fairness already has a meaning, namely that similar individuals are treated similarly,
as described above in Section 3. It rather is an operationalisation that has to be
employed appropriately in order to yield a proper measure of individual fairness.
This, for example, includes a parameterisation with a fitting fairness contract that
is meaningful in the context of individual fairness, and fixes what similarity is to
mean in this context. Nevertheless, Definition 2 is a suitable operationalisation for
our purposes. In this paper, it will be clear from the context whether we will talk
about individual fairness in its original sense or in terms of the operationalisation.

7 A case where actual inputs might not have real-world counterparts is testing.



Algorithm 1 FairnessMonitor,
with ξ-min S = (ξ, i1, i2) only if (ξ, i1, i2) ∈ S and for all (ξ′, i′1, i

′
2) ∈ S, ξ′ ≥ ξ

Falsification Parameters: PS: Proposal scheme, β: Temperature parameter
Input: System P : In → Out, Fairness contract F = ⟨dIn, dOut, f⟩, and set of actual

inputs I
Output: A minimal fairness score triple from R × I × In.
1: is ← any input ia ∈ I
2: (ξ, imin, is)← ξ-min{(F (ia, is), ia, is) | ia ∈ I}
3: (ξmin, i1, i2)← (ξ, imin, is)
4: while not timeout do
5: i′s ← PS(is,P(is))
6: (ξ′, i′min, i

′
s)← ξ-min{(F (ia, i

′
s), ia, i

′
s) | ia ∈ I}

7: (ξmin, i1, i2)← ξ-min{(ξmin, i1, i2), (ξ
′, i′min, i

′
s)}

8: α← exp(−β(ξ′ − ξ))
9: r ← UniformRandomReal(0, 1)
10: if r ≤ α then
11: is ← i′s
12: ξ ← ξ′

13: end if
14: end while
15: return (ξmin, i1, i2)

on the quality of the fairness analysis. A full discussion about which types of
functions make a good f goes beyond the scope of this paper. What are suitable
choices for f and the distance functions dIn and dOut heavily depends on the
context in which fairness is analysed – there is no one-fits-it-all solution. Individual
fairness makes this explicit with the formal fairness contract F = ⟨dIn, dOut, f⟩.

4.2 Fairness Monitoring

We now develop a fairness monitor based on probabilistic falsification [1]. Given a
set of actual inputs, the monitor searches for a synthetic counterexample to falsify
a system P w.r.t. a fairness contract F . To this end, we define a fairness score as
function F (ia, is) := f(dIn(ia, is))− dOut(P(ia),P(is)). With regard to probabilistic
falsification F is a quantitative description of individual fairness that serves as a
robustness estimate. That is, if F (ia, is) is non-negative, then dOut(P(ia),P(is)) ≤
f(dIn(ia, is)), and if it is negative, then dOut(P(ia),P(is)) ̸≤ f(dIn(ia, is)). For a set
of actual inputs I, the definition generalises to F (I, is) := min{F (ia, is) | ia ∈ I},
i.e., the overall fairness score is the minimum of the concrete fairness scores of
the inputs in I.

Algorithm 1 shows FairnessMonitor, which searches for the minimal fairness
score in a system P for fairness contract F . The algorithm stores fairness scores in
triples that also contain the two inputs for which the fairness score was computed.
The minimum in a set of such triples is defined by the function ξ-min that returns
the triple with the smallest fairness score of all triples in the set. The first line of
FairnessMonitor initialises the variable is with an arbitrary actual input from I.



For this value of is, the algorithm checks the corresponding fairness scores for all
actual inputs ia ∈ I and stores the smallest one. In line 3, the globally smallest
fairness score triple is initialised. In line 5, the algorithm uses a parameterisable
proposal scheme to get the next synthetic input i′s. Line 6 is similar to line 2: for
the newly proposed i′s it finds the smallest fairness score, stores it, and updates
the global minimum if it found a smaller fairness score (line 7). Lines 8-13 are the
heart of the probabilistic search for an example that violates fairness; it comes
from the original algorithm proposed by Abbas et al. [1]. Our variant of the
algorithm does not (exclusively) aim to falsify the fairness property, but aims at
minimising the fairness score; even if the fair treatment of the inputs in I cannot
be falsified in a reasonable amount of time, we still learn how robustly they are
treated fairly, i.e., how far the least fairly treated individual in I is away from
being treated unfairly. After the timeout occurs, the algorithm returns the triple
with the overall smallest seen fairness score ξmin, together with the actual input
i1 and the synthetic input i2 for which ξmin was found. In case ξmin is negative, i2
is a counterexample for P being individually fair.

FairnessMonitor implements a sound F -unfairness detection as stated in Propo-
sition 1. However, it is not complete, i.e., it is not generally the case that P is
individually fair for I if ξ is positive. It may happen that there is a counterexample,
but FairnessMonitor did not succeed in finding it before the timeout.

Proposition 1. Let P : In → Out be a program, F = ⟨dIn, dOut, f⟩ a fairness
contract, and I a set of actual inputs. Further, let (ξmin, i1, i2) be the result of
FairnessMonitor(P,F , I). If ξmin is negative, then P is not individually fair for I
w.r.t. F .

Moreover, FairnessMonitor circumvents major restrictions of Lipschitz-fairness:

dIn-dOut-relation: Individual fairness defines constraints between input and
output distances by means of a function f , which allows the expression
of complex fairness constraints. For a more elaborate discussion, see [12,
Appendix A].

Input relevance: Individual fairness explicitly distinguishes between actual
and synthetic inputs. This way, individual fairness acknowledges a possible
obstacle of the fairness theory when it comes to real-world usage of the
analysis, namely that only some elements of the system’s input domain might
be plausible, and usually, only a few of them become actual inputs that have
to be monitored for unfairness.

Monitorability: FairnessMonitor demonstrates that individual fairness is moni-
torable. It resolves the quantification over In using the above concepts from
probabilistic falsification using the robustness estimate function F as defined
above.

Towards individual fairness in the loop. If a high-risk system is in operation, a
human in the loop must oversee the correct and fair functioning of the outputs of
the system. To do this, the human needs real-time fairness information. Figure 2
shows how this can be achieved by coupling the system P and the FairnessMonitor
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Fig. 2: Schematic visualisation of FairnessAwareSystem

in Algorithm 1 in a new system called FairnessAwareSystem. FairnessAwareSystem
is sketched in Algorithm 2.

Algorithm 2 FairnessAwareSystem

Parameters: System P : In→ Out, Fairness contract F = ⟨dIn, dOut, f⟩
Input: Input ia ∈ In
Output: Tuple of the system output, normalised fairness score, and synthetic values

witnessing the fairness score
1: (ξmin, ia, is)← FairnessMonitor(P,F , {ia})

2: return

(
P(ia),

ξmin

f(dIn(ia, is))
, (is,P(is))

)

Intuitively, the FairnessAwareSystem is a higher-order program that is parame-
terised with the original program P and the fairness contract F . When instantiated
with these parameters, the program takes arbitrary (actual) inputs ia from In. In
the first step, it does a fairness analysis using FairnessMonitor with arguments P,
F , and {ia}. To make fairness scores comparable, FairnessAwareSystem normalises
the fairness score ξ received from FairnessMonitor by dividing8 it by the output
distance limit f(dIn(ia, is)). For fair outputs, the score will be between 0 (almost
unfair) and 1 (as fair as possible).9 Outputs that are not individually fair are
accompanied by a negative score representing how much the limit f(dIn(ia, is))
is exceeded. A fairness score of −n means that the output distance of P(ia) and
P(is) is n+ 1 times as high as that limit. Finally, FairnessAwareSystem returns
the triple with P’s output for ia, the normalised fairness score, and the synthetic
input with its output witnessing the fairness score.

8 For f that can return 0, a division of zero by zero may occurr. The result of this
division should be defined depending on the concrete context; reasonable values range
from the extreme scores 0 (to indicate that the score is on edge of becoming ‘unfair’)
to 1 (to indicate that more fairness is impossible).

9 Fairness may be a vague concept that cannot be dichotomised. By its choice of the
fairness contract parameters, our approach nevertheless specifies a (non-arbitrary)
cut-off point at 0; but it does so for purely instrumental and non-ontological reasons.



Interpretation of monitoring results. Especially when FairnessAwareSystem finds
a violation of individual fairness, the suitable interpretation and appropriate
response to the normalised fairness score proves to be a non-trivial matter that
requires expertise.

Example 2. Instead of using P from Example 1 on its own, Unica now uses
FairnessAwareSystem with a suitable fairness contract. and thereby receive
a fairness score along with P’s verdict on each applicant. (Which fairness
contracts are suitable is an open research problem, see Limitations &
Challenges in Section 6.) If the fairness score is negative, she can also take
into account the information on the synthetic counterpart returned by
FairnessAwareSystem. Among the 4096 applicants for the PhD program,
the monitoring assigns a negative fairness score to three candidates: Alexa,
who received a low score, Eugene, who was scored very highly, and John,
who got an average score. According to their scoring, Alexa would be
desk-rejected, while Eugene and John would be considered further.
Alexa’s synthetic counterpart, let’s call him Syntbad, is ranked much
higher than Alexa. In fact, he is ranked so high that Syntbad would
not be desk-rejected. Unica compares Alexa and Syntbad and finds that
they only differ in one respect: Syntbad’s graduate university is the one
in the official ranking that is immediately below the one that Alexa
attended. Unica does some research and finds that Alexa’s institution is
predominantly attended by People of Colour, while this is not the case
for Syntbad’s institution. Therefore, FairnessAwareSystem helped Unica
not only to find an unfair treatment of Alexa, but also to uncover a case
of potential racial discrimination.
John’s counterpart, Synclair, is ranked much lower than him. Unica man-
ually inspects John’s previous institution (an infamous online university),
his GPA of 1.8, and his test result with only 13%. She finds that this very
much suggests that John will not be a successful PhD candidate and desk-
rejects him. Therefore, Unica has successfully used FairnessAwareSystem
to detect a fault in the scoring system P whereby John would have been
treated unfairly in a way that would have been to his advantage.
Eugene received a top score, but his synthetic counterpart, Syna, received
only an average one. Unica suspects that Eugene was ranked too highly
given his graduate institution, GPA, and test score. However, as he would
not have been desk-rejected either way, nothing changes for Eugene, and
the unfairness he was subject to, is not of effect to him.
The cases of John and Eugene share similarities with the configuration
in (b) in Figure 3, the one of Alexa with (a), and the ones of all other
4093 candidates with (c).

If our monitor finds only a few problematic cases in a (sufficiently large and
diverse) set of inputs, our monitoring helps Unica from our running example by
drawing her attention to cases that require special attention. Thereby, individuals
who are judged by the system have a better chance of being treated fairly, since
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Fig. 3: Exemplary illustration of configurations of an input (red cross) and its
synthetic counterparts (grey circles) and the synthetic counterpart with the
minimal fairness score (blue polygon); with a two-dimensional input space (grid)
and a one-dimensional output.

even rare instances of unfair treatment can be detected. If, on the other hand, the
number of problematic cases found is large or Unica finds especially concerning
cases or patterns, this can point to larger issues within the system. In these
cases, Unica should take appropriate steps and make sure that the system is no
longer used until clarity is established as to why so many violations or concerning
patterns are found. If the system is found to be systematically unfair, it should
arguably be removed from the decision process. A possible conclusion could
also be that the system is unsuitable for certain use cases, e.g., for the use of
individuals from a particular group. Accordingly, it might not have to be removed
altogether but only needs to be restricted such that problematic use cases are
avoided. In any case, significant findings should also be reported to the developers
or deployers of the potentially problematic system. A fairness monitoring such as
in FairnessAwareSystem or a fairness analysis as in FairnessMonitor could also be
useful to developers, regulating authorities, watchdog organisations, or forensic
analysts as it helps them to check the individual fairness of a system in a controlled
environment.

Remark 1. Individual fairness is called func-fairness in [12] and is an adaptation
of func-cleanness, which has been studied in earlier work [22,11] on software
doping. In this context, a cleanness property – like func-cleanness – characterises
the absence of doped software. Intuitively, software doping relates to the existence
of a hidden feature in a software that was added intentionally by the software
manufacturer, but which is not in the interest of the user or society. The diesel
emissions scandal is by now the archetypal example of software doping: various
car manufacturers added defeat devices into their emission cleaning systems to
distinguish whether the car is undergoing an emissions test from whether it is used
in normal operation on the road. In the former case, the emission cleaning worked
as required, while in the latter case, the engine control system was optimising



for other objectives instead, thereby effectively infringing legal requirements. A
falsification-based monitoring approach, including a logical characterisation of
various notions of cleanness, has been developed for the diesel use-case [15,12].

5 Interdisciplinary Assessment of Fairness Monitoring

The upcoming AI act stresses the need for human oversight of AI systems,
but its stipulations are not free of ambiguities and the need for interpretation.
This raises the question of whether our approach meets requirements that go
beyond pre-theoretical deliberations. We here assess some key normative aspects
in philosophical and legal terms, and also briefly turn to the related empirical
aspects, especially from psychology.

5.1 Psychological assessment

Fairness monitoring promises various advantages in terms of human-system
interaction in application contexts – provided it is extended by an adequate user
interface – which calls for empirical tests and studies. We will only discuss a
possible benefit that closely aligns with the upcoming AI Act: our approach may
support effective human oversight. Two central aspects of effective oversight are
situation awareness and warranted trust. Our method highlights unfairness in
outputs which can be expected to increase users’ situation awareness (i.e., “the
perception of the elements in the environment within a volume of time and space,
the comprehension of their meaning and the projection of their status in the near
future” [26, p. 36]), which is a variable central for effective oversight [27]. In the
minimal case, this allows users to realise that something requires their attention
and that they should check the outputs for plausibility and adequacy. In the
optimal case and after some experience with the monitor, it may even allow users
to predict instances where a system will produce potentially unfair outputs. In
any case, the monitoring should enable them to understand the limitations of
the system and to feed back their findings to developers who can improve the
system. This leads us to warranted trust, which includes that users are able to
adequately judge when to rely on system outputs and when to reject them [48,39].
Building warranted trust strongly depends on users being able to assess system
trustworthiness in the given context of use [72,48]. According to their theoretical
model on trust in automation, Lee and See [48] propose that trustworthiness
relates to different facets of which performance (e.g., whether the system performs
reliably with high accuracy) and process (e.g., knowing how the system operates
and whether the system’s decision-processes help to fulfil the trustor’s goals) are
especially relevant in our case. Specifically, fairness monitoring should enable
users to judge system performance more accurately (e.g., by revealing possible
issues with system outputs) and system processes (e.g., whether the system’s
decision logic was appropriate). In line with Lee and See’s propositions, this
should provide a foundation for users to judge system trustworthiness better and
should thus be a promising means to promote warranted trust. In consequence,



our monitoring provides a needed addition to high-risk use contexts of AI because
it offers information enabling humans to more adequately use AI-based systems
in the sense of possibly better human-system decision performance and with
respect to user duties as described in the AI Act.

5.2 Philosophical assessment

More effective oversight promises more informed decision-making. This, in turn,
enables morally better decisions and outcomes since humans can morally amelio-
rate outcomes in terms of fairness and can see to it that moral values are promoted.
Fairness monitoring also helps safeguard fundamental democratic values if it is
applied to potentially unfair systems used in certain societal institutions of a
high-risk character, such as courts or parliaments. It could, for example, make
AI-aided court decisions more transparent and promote equality before the law.
However, since our approach requires finding context-appropriate and morally
permissible parameters for F , moral requirements arise to enable the finding of
such parameters. This affects not only developers of such systems but also those
who are in a position to enforce that adequate parameters are chosen, such as
governmental authorities, supervising institutions, or certifiers.

Apart from that, various parties have arguably a legitimate interest in ad-
equately ascribing moral responsibility for the outcomes of certain decisions
to human deciders [10] – regardless of whether the decision-making process is
supported by a system. Adequately ascribing moral responsibility is not always
possible, though. One precondition for moral responsibility is that the agent had
sufficient epistemic access to the consequences of their doing [80,58], i.e., that
they have enough and sufficiently well-justified beliefs about the results of their
decision. Someone overseeing a university selection process (like Unica) should,
for example, have sufficiently well-justified beliefs that, at the very least, their
decisions do not result in more unfairness in the world. If the admission process
is supported by a black-box system, though, Unica cannot be expected to have
any such beliefs since she lacks insight in the fairness of the system. Therefore,
adequate responsibility ascription is usually not possible in this scenario. Our
monitoring alleviates this problem by providing the decider with better epistemic
access to the fairness of the system.

FairnessAwareSystem helps in making Unica’s role in the decision process
significant and not only that of a mere button-pusher. FairnessAwareSystem
makes it possible for her to fulfil some of the responsibilities and duties plausibly
associated with her role. For example, she can now be realistically expected to not
only detect, but resolve at least some cases of apparent unfairness competently
(although she may need additional information to do so). In this respect, she
should not be ‘automated away’ (cf. [50]).

5.3 Legal assessment

A central legislative debate of our time is how to counter the risks AI systems
can pose to the health and safety or fundamental rights of natural persons.



Protective measures must be taken at various levels: First, before being permitted
on the market, it must be ensured ex-ante that such high-risk AI-systems are in
conformity with mandatory requirements regarding safety and human rights [29,
Art. 16, Art 27]. This means in particular that the selection of the properties
that a system should exhibit requires a positive normative choice and should not
simply replicate biases present in the status quo [83]. In addition, AI-systems
must be designed and developed in such a way that natural persons can oversee
their functioning. For this purpose, it is necessary for the provider to design
and develop the AI system in such a way that it includes appropriate features
enabling human oversight before it is placed on the market or put into service
[29, Art. 14].

Second, during runtime, the proper functioning of high-risk AI systems that
have been legally placed on the market must be ensured. To achieve this goal, a
bundle of different measures is needed, ranging from legal obligations to implement
and perform meaningful oversight mechanisms to user training and awareness
in order to counteract ‘automation bias’. In particular, such measures should
guarantee that the natural persons to whom human oversight has been assigned
have the necessary competence, training, and authority to carry out that role
[29, Art. 26 (2)]. Furthermore, the AI Act proposal requires deployers to inform
the provider or distributor and suspend the use of the system when they have
identified any serious incidents or any malfunctioning [29, Art. 26(5)].

Third, and ex-post, providers must act and take the necessary corrective
actions as soon as they become aware, e.g., through information provided by
the deployer, that the high-risk system does not (or no longer) meet the legal
requirements [29, Art. 20]. To this end, they must establish and document a
system of monitoring that is proportionate to the type of AI technology and the
risks of the high-risk AI system [29, Art. 72].

Fairness monitoring can be helpful in all three of the above respects. Therefore,
we argue that there is even a legal obligation to use technical measures such as
the method presented in this paper if this is the only way to ensure effective
human oversight.

6 Conclusion

This invited paper has echoed elements of a forthcoming journal publication [12]
that applies runtime monitoring and probabilistic falsification techniques to high-
risk (AI) systems.

We have looked at a runtime fairness monitor to promote effective human
oversight of high-risk systems. An interdisciplinary evaluation from a psycho-
logical, philosophical, and legal perspective complements the development of
this monitor. As seen in Figure 1, our fairness monitoring aims to uncover a
particular kind of unfairness, namely individual unfairness, that originates from
within the system. This does not include group unfairness as well as unfairness
from sources other than the system. Another limitation is the need to account
for the human’s competence to interpret the system outputs. Even though this is



not a limitation that is inherent to our approach, it nevertheless will arguably be
relevant in some practical cases, and an implementation of the monitoring always
has to happen with the human in mind. For example, the design of the tool
should avoid creating the false impression that the system is proven to be fair
for an individual if no counterexample has been found. Interpretations like this
could lead to inflated judgements of system trustworthiness and eventually to
overtrusting system outputs [72,74]. Also, it might be reasonable to limit access
to the monitoring results: if individuals who are processed by the system have
full access to their fairness analysis, they could use this to ‘game’ the system, i.e.,
they could use the synthetic inputs to slightly modify their own input such that
they receive a better outcome. While more transparency for the user is generally
desirable, this has to be kept in mind to avoid introducing new unfairness on a
meta-level.
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Garćıa, S., Gil-López, S., Molina, D., Benjamins, R., et al.: Explainable artificial
intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI. Information Fusion 58, 82–115 (2020)

5. Artistotle: The Nicomachean Ethics. Oxford worlds classics, Oxford University
Press, Oxford (1998), translation by W.D. Ross. Edition by John L. Ackrill, and
James O. Urmson.

6. Artistotle: Politics. Oxford worlds classics, Oxford University Press, Oxford (1998),
translation by Ernest Barker. Edition by R. F. Stalley.

7. Barocas, S., Selbst, A.D.: Big data’s disparate impact. Calif. L. Rev. 104, 671
(2016)

8. Bathaee, Y.: The artificial intelligence black box and the failure of intent and
causation. Harv. JL & Tech. 31, 889 (2017)

9. Baum, D., Baum, K., Gros, T.P., Wolf, V.: XAI Requirements in Smart Production
Processes: A Case Study. In: World Conference on Explainable Artificial Intelligence.
pp. 3–24. Springer (2023)

10. Baum, K., Mantel, S., Schmidt, E., Speith, T.: From responsibility to reason-
giving explainable artificial intelligence. Philosophy & Technology 35(1), 12

https://perspicuous-computing.science
https://explainable-intelligent.systems
https://certain.dfki.de/
https://www.interregnorthsea.eu/stormsafe
https://doi.org/10.1145/2465787.2465797
https://doi.org/10.1145/2465787.2465797
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


(2022). https://doi.org/10.1007/s13347-022-00510-w, https://doi.org/10.1007/
s13347-022-00510-w

11. Biewer, S.: Software Doping – Theory and Detection. Phd thesis, Universität
des Saarlandes (2023). https://doi.org/10.22028/D291-40364, http://dx.doi.org/10.
22028/D291-40364

12. Biewer, S., Baum, K., Sterz, S., Hermanns, H., Hetmank, S., Langer, M., Lauber-
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