
V1.1

Ar
tifa

ctsAvailable
Software Verification Witnesses 2.0

Paulína Ayaziová 1, Dirk Beyer 2⋆, Marian Lingsch-Rosenfeld 2,

Martin Spiessl 2, and Jan Strejček 1

1 Masaryk University, Brno, Czech Republic
{xayaziov,strejcek}@fi.muni.cz
2 LMU Munich, Munich, Germany

{dirk.beyer,marian.lingsch,spiessl}@sosy.ifi.lmu.de

Abstract. Verification witnesses are now widely accepted objects used
not only to confirm or refute verification results, but also for general
exchange of information among various tools for program verification. The
original format for witnesses is based on GraphML, and it has some known
issues including a semantics based on control-flow automata, limited tool
support of some format features, and a large size of witness files. This
paper presents version 2.0 of the witness format, which is based on YAML
and overcomes the above-mentioned issues. We describe the new format,
provide an experimental comparison of various aspects of the original
and the new witness format showing that both witness formats perform
similarly, and report on its adoption in the community.

Keywords: Verification Witness · Software Verification · Validation ·
Exchange Format · Invariant · Counterexample

1 Introduction

Software verification is a process that detects bugs in computer programs or proves
their absence. Unfortunately, software verifiers can also contain bugs and their
verdicts can thus be incorrect. To increase the reliability of the verification process,
starting eight years ago, software verifiers have accompanied their verification
results with witnesses that justify the verdict and can be independently analyzed
by witness validators developed by various teams and based on different techniques.

The first generic format for witnesses of verification results [1] was introduced
in 2015. It supported only violation witnesses (also called counterexamples)
produced when a verifier reports that a given program violates a considered
safety specification. In 2016, the format was extended to accommodate also
witnesses for the cases when a verifier decides that a given program satisfies a
given specification [2]. Such witnesses are called correctness witnesses, and they
should contain invariants that help to prove that the program is correct. The
format was soon adopted by the verification community and by the Competition
on Software Verification (SV-COMP) [3], which led to fast adoption of the format

⋆ Corresponding Author

https://eapls.org/pages/artifact_badges/
https://orcid.org/0000-0003-1072-8137
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0002-8172-3184
https://orcid.org/0000-0002-9169-9130
https://orcid.org/0000-0001-5873-403X


2 P. Ayaziová, D. Beyer, M. Lingsch-Rosenfeld, M. Spiessl, and J. Strejček

by many verification tools and to the development of numerous witness validators.
The overview of existing validators can be found in a recent survey [4]. Since 2023,
SV-COMP has a new track on witness validation [5].

While the format was originally intended for validation of verification results,
some witness validators can also refute a witness [4, 5]. The format soon found
also some applications that were not intended at the time of its development. In
particular, it is used to exchange information between different verifiers in the
context of cooperative verification [6, 7], as a way to provide feedback to a software
developer [8, 9], or as a way to combine automatic and interactive verifiers [10]. In
2022, the authors of the format published a paper [11] with its detailed description
and with an extensive experimental study on its applications.

Despite the indisputable success of the format, it has also some weaknesses.
The format is based on GraphML [12] and witnesses have the form of automata,
which makes them easy to visualize, but also lengthy and unsuitable for reading
in their textual form. More importantly, the semantics of the format is formally
defined over programs represented by control-flow automata (CFA). Unfortunately,
there is no standardized translation of programs written in common programming
languages like C or Java to CFA. As a result, the semantics of the format over
programs in standard languages has some ambiguities. The SV-COMP community
even found a part of the semantics related to implicit loop edges as inappropriate
and decided to change it. Another issue of the original witness format is connected
to the high number of features it provides. For example, if an invariant or an
assumption uses variables that appear in different functions or scopes, the format
allows to specify the scope for their interpretation. Another example is that the
location of some witness event can be specified very loosely by an interval of
lines. Practical experience shows that some of these features are not used in
any witness generated by verifiers and, what is more alarming, unsupported or
even ignored by witness validators. In fact, there is probably no witness validator
fully implementing the format. This can lead to the situation in which a valid
verification witness employing some less frequent feature is not confirmed or even
refuted, or an invalid witness is confirmed.

This paper presents a new generation of the witness format that avoids the
mentioned weaknesses. In particular, we use a concise format that is based on
YAML, which makes the witnesses shorter in general. Further, the format provides
only features that were really used by verification witnesses in the original format.
As the format is significantly simpler, it is easy to fully support it by validators.
Finally, the semantics of the format is formulated over programming languages
using terms and concepts from their standards.

The format itself is described in Sect. 2 and referred to as version 2.0. In
its current state, the format supports only sequential programs written in C
and basic program properties, namely unreachability of a given error function,
unreachability of signed integer overflow, and unreachability of invalid pointer
dereference and deallocation. We have adopted two verification tools, namely
CPAchecker [13] and Symbiotic [14], to produce verification witnesses in the new
format. We have also developed two witness validators, namely CPAchecker [11]



Software Verification Witnesses 2.0 3

(as an extension of the exiting tool) and Witch3 (new validator based on the
concept of Witch3 [15]) to validate witnesses in this format. Using these tools
and other tools from the competition, Sect. 3 evaluates the impact of the new
format on the witnesses and their validation. Sect. 4 summarizes the differences
between the original and the new format and shows the current adoption of the
new format by verification and witness validation tools.

Contributions. In this paper, we contribute:

– a new generation of the format for verification witnesses that solves most
problems that were present in the previous format,

– a preliminary evaluation of the impact of the new format on the effectivity
and performance of witness validation, and

– an overview of a few measures that characterize the new witnesses.

Related Work. Our work certainly stands on the shoulders of the original format
for verification witnesses [1, 2], but we claim to provide a substantial improvement
over the original format by addressing its weaknesses (see Sect. 4). Witnesses are
used ubiquitously in areas where algorithms have a high computational complexity.
For example, witnesses are used for certifying graph algorithms [16]. Turing used
assertions [17] already and argued that one should justify the correctness of
programs. In the area of logic solvers, witnesses for the results are of essence for
competitions, and important competitions require witnesses and their validation.
For example, the Termination Competition (termCOMP) [18] uses the format
CPF [19], the competition of SAT solvers [20] uses the DRAT format [21] together
with the validator DRAT-trim [22], and the competition on SMT solving verifies
models with Dolmen [23].

Witnesses are not only important to certify the correctness of a solver’s answer,
it is also important for the goal of explainability: The true / false answers alone
are not as valuable compared to also providing the reasons to understand the
answer. For example, witnesses can be used to derive test cases [9] and to aid
debugging with visualizations [8]. Execution reports [24] help organize the analysis
results, and the format SARIF [25] is used by static analyzers to represent results.

2 Witness Format 2.0

The witness format 2.0 is an extension of the YAML format, version 1.2. Individual
verification witnesses are represented by entries. Each entry has three key-value
pairs. The key entry_type has the value invariant_set or violation_sequence
corresponding to the type of the witness: a correctness witness is represented by
one or more entries of type invariant_set , while a violation witness is represented
by a single entry of type violation_sequence . Further, the key metadata refers
to a mapping that describes mainly the context of the witness: the format version
used by the entry, the unique identifier of the entry, the creation time of the entry,
the tool that produced the entry, and the verification task the witness relates to.
Finally, the value of the key content represents the semantical content of the

https://yaml.org


4 P. Ayaziová, D. Beyer, M. Lingsch-Rosenfeld, M. Spiessl, and J. Strejček

Table 1: Structure of entries common for violation and correctness witnesses; some
nodes are nested; optional items are marked with ∗; the term scalar in YAML
refers also to strings
Key Value Description

entry_type invariant_set the entry type of a correctness witness
violation_sequence the entry type of a violation witness

metadata mapping the context of the witness; see below
content sequence the witness content; see Tables 2 and 3

content of metadata
format_version 2.0 the used version of the format

uuid scalar a unique identifier of the entry; it uses
the UUID format defined in RFC4122

creation_time scalar the date and time of the entry creation;
it uses the format given by ISO 8601

producer mapping the tool that produced the entry;
see below

task mapping the verification task to which the entry
is related; see below

content of producer
name scalar the name of the tool
version scalar the version of the tool
configuration ∗ scalar the configuration in which the tool ran

command_line ∗ scalar the command line with which the tool ran;
it should be a bash-compliant command

description ∗ scalar any additional information
content of task

input_files sequence
the list of files given as input to the verifier,
e.g. ["path/f1.c", "path/f2.c"]

input_file_hashes mapping
SHA-256 hashes of all files in input_files ,
e.g. {"path/f1.c": 511...,
"path/f2.c": f70...}

specification scalar
the property considered by the verifier;
it uses the SV-COMP format given at
https://sv-comp.sosy-lab.org/2024/rules.php

data_model ILP32 or LP64 the data model considered for the task

language C the programming language of the input
files; the format currently supports only C

entry. The key-value pairs are presented in a structured way in Table 1. The table
also presents the key-value pairs of the nested mapping metadata and its nested
mappings producer and task . We describe the possible values of the key content

https://sv-comp.sosy-lab.org/2024/rules.php


Software Verification Witnesses 2.0 5

1 void reach_error (){}
2 extern unsigned char __VERIFIER_nondet_uchar(void);
3 int main() {
4 unsigned char n = __VERIFIER_nondet_uchar ();
5 if (n == 0) {
6 return 0;
7 }
8 unsigned char v = 0;
9 unsigned int s = 0;

10 unsigned int i = 0;
11 while (i < n) {
12 v = __VERIFIER_nondet_uchar ();
13 s += v;
14 ++i;
15 }
16 if (s < v) {
17 reach_error ();
18 return 1;
19 }
20 if (s > 65025) {
21 reach_error ();
22 return 1;
23 }
24 return 0;
25 }

Specification:
G ! call(reach_error()),
i.e., all calls of reach_error()
are unreachable

q1true

q2

s ≤ i · 255
∧ 0 ≤ i ≤ 255
∧ n ≤ 255

q3true q4 true

10,enterLoopHead

o/w

o/w

11,then 11,else

o/w

14,enterLoopHead

o/w

1 - entry_type: invariant_set
2 metadata: <...>
3 content:
4 - invariant:
5 type: loop_invariant
6 location:
7 file_name: "inv -a.c"
8 line: 11
9 column: 1

10 function: main
11 value: "s <= i*255 && 0 <= i

↪→ && i <= 255 && n <= 255"
12 format: c_expression

Fig. 1: Example C program inv-a.c taken from [11] (top left) satisfying the given
specification (bottom left) and equivalent correctness witnesses in format 1.0
(top right, visualized as automaton) and format 2.0 (bottom right), with a single
nontrivial invariant

in the following subsections separately for correctness witnesses and violation
witnesses as they are conceptually different.

2.1 Correctness Witnesses

Correctness witnesses provide invariants that should help to prove the program
correct. In the old format (1.0), invariants are tied to automata nodes and these
nodes can correspond to multiple program locations and various moments of
program executions. The new format (2.0) simply assigns invariants to program
locations. Figure 1 provides an example of a correctness witness in the old format
and in the new format.

Syntax. In entries of type invariant_set which represent a correctness witness,
the key content contains a sequence of zero or more invariants. An invariant is
a mapping with the following four keys.

type has the value loop_invariant if the invariant is assigned to a loop head
and the value location_invariant if it is assigned to another location.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/8d186ea0959e6be1086512bc2d4ab57258d62ad7/c/loop-invariants/linear-inequality-inv-a.c


6 P. Ayaziová, D. Beyer, M. Lingsch-Rosenfeld, M. Spiessl, and J. Strejček

Table 2: Structure of the content part of entries representing correctness witnesses;
optional items are marked with ∗

Key Value Description

content sequence a sequence of one or more invariant elements
description of invariant

invariant mapping a basic building block of correctness witnesses;
see below

content of invariant
type loop_invariant the invariant type for iteration statements

location_invariant the invariant type for arbitrary statements
location mapping the location of the invariant; see below
format c_expression the invariant is a C expression
value scalar the actual invariant

content of location
file_name scalar the file of the location
line scalar the line number of the location
column ∗ scalar the column of the location
function ∗ scalar the name of the function containing the location

location of a loop_invariant must point to the first character of a keyword
at the beginning of a loop (i.e., for, while, or do). The location of a
location_invariant must point to the first character of a statement or a
declaration that is within a compound statement.

format has the value c_expression as the format currently supports only invari-
ants that are C expressions.

value holds the actual invariant string (e.g., "s <= i*255 && i > 0" ), which is
a side-effect-free C expression over variables in the scope where the invariant
is placed.

The location is a mapping with mandatory keys file_name that holds the name
of the file and line representing the line number (the first line has the number 1).
Additionally, there are two optional keys called column and function . The key
column specifies the column number of the location (value 1 is the position of
the first character on the line ). If the column is not given, then it is interpreted
as the leftmost suitable position on the line, where suitability is given by type
and the restrictions given above. The key function provides the name of the
function containing the location. Technically, this information is superfluous as it
is determined by the file_name , line , and column . It is therefore not intended for
any algorithmic processing of the witness, but only to improve human readability
of the witness.

The structure of content and its nested items are summarized in Table 2.

Semantics. The correctness witness is valid if it fulfills the following requirements.



Software Verification Witnesses 2.0 7

– Each loop_invariant must always hold immediately before evaluating the
condition of the corresponding loop.

– Each location_invariant must always hold immediately before evaluating
the corresponding statement or declaration.

– The specification must be satisfied for all program executions.

Note that the order of invariants in an invariant_set or their division into
several entries of type invariant_set is not important. The semantics also reveals
the difference between the two types of invariants: if we replace loop_invariant
with location_invariant , then the invariant has to hold only before the loop is
executed, but not after each loop iteration.

2.2 Violation Witnesses

A violation witness should describe a program execution violating the considered
property. For brevity, the violating execution is described loosely and the witness
thus represents a set of such executions. In the old format (1.0), a violation
witness is an automaton with edges prescribing consecutive restrictions on program
executions. The automaton can contain various branches and loops. In the new
format (2.0), a violation witness is a sequence of waypoints that have to be passed
by the executions. To make the witness validation more efficient, the format also
allows specifying waypoints that have to be avoided. Figure 2 provides an example
of a violation witness in the old format and in the new format.

Syntax. The basic building blocks of violation witnesses in the new format are
waypoints. Technically, a waypoint is a mapping with four keys, namely type ,
location , constraint , and action . The values of the first three keys specify a
requirement on a program execution to pass a waypoint: type describes the type
of the requirement, location ties the requirement to some program location, and
constraint gives the requirement itself. The key action then states whether the
executions represented by the witness should pass through the waypoint (value
follow ) or avoid it (value avoid ). The format currently supports five possible
values of type with the following meanings:

assumption The location has to point to the first character of a statement
or a declaration within a compound statement. A requirement of this type
says that a given constraint holds before evaluating the pointed statement or
declaration. The constraint is a mapping with two keys: format specifies the
language of the assumption and value contains a side-effect-free assumption
over variables in the current scope. The value of format is c_expression as
C expressions are the only assumptions currently supported. In the future,
we plan to support also assumptions in ACSL [26].

branching A requirement of this type says that a given branching is evaluated in
a given way. The location points to the first character of a branching keyword
like if, while, switch, or to the character ? in the ternary operator (?:). The
constraint is then a mapping with only one key value . For binary branchings,
value can be either true or false saying whether the true branch is used or



8 P. Ayaziová, D. Beyer, M. Lingsch-Rosenfeld, M. Spiessl, and J. Strejček

1 void reach_error (){}
2 extern unsigned char
↪→ __VERIFIER_nondet_uchar(void);
3 int main() {
4 unsigned char n = __VERIFIER_nondet_uchar ();
5 if (n == 0) {
6 return 0;
7 }
8 unsigned char v = 0;
9 unsigned char s = 0;

10 unsigned int i = 0;
11 while (i < n) {
12 v = __VERIFIER_nondet_uchar ();
13 s += v;
14 ++i;
15 }
16 if (s < v) {
17 reach_error ();
18 return 1;
19 }
20 if (s > 65025) {
21 reach_error ();
22 return 1;
23 }
24 return 0;
25 }

Specification:
G ! call(reach_error()),
i.e., all calls of reach_error()
are unreachable

ble qi

q1

q2

q4

qE

11,then

o/w

11,then

o/w

11,else

o/w

16,then

o/w

o/w

1 - entry_type:
↪→ violation_sequence
2 metadata: <...>
3 content:
4 - segment:
5 - waypoint:
6 action: follow
7 type: branching
8 location:
9 file_name:

↪→ "inv -b.c"
10 line: 11
11 constraint:
12 value: true
13 - segment:
14 - waypoint:
15 action: follow
16 type: branching
17 location:
18 file_name:

↪→ "inv -b.c"
19 line: 11
20 constraint:
21 value: true
22 - segment:
23 - waypoint:
24 action: follow
25 type: branching
26 location:
27 file_name:

↪→ "inv -b.c"
28 line: 11
29 constraint:
30 value: false
31 - segment:
32 - waypoint:
33 action: follow
34 type: target
35 location:
36 file_name:

↪→ "inv -b.c"
37 line: 17

Fig. 2: Example C program inv-b.c taken from [11] (top left) violating the given
specification (bottom left) and similar violation witnesses in format 1.0 (middle,
visualized as automaton) and format 2.0 (right)

not. For the keyword switch, value can be an integer constant or default .
The integer constant specifies the value of the controlling expression of the
switch statement. The value default says that the value of this expression
does not match any case of the switch with the exception of the default
case (if it is present).

function_enter The location points to the right parenthesis after the function
arguments of a function call. The requirement says that the called function is
entered. The key constraint has to be omitted in this case.

function_return Such a requirement says that a given function call has been
evaluated and the returned value satisfies a given constraint. The location
points to the right parenthesis after the function arguments at the function

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/8d186ea0959e6be1086512bc2d4ab57258d62ad7/c/loop-invariants/linear-inequality-inv-b.c


Software Verification Witnesses 2.0 9

call. The constraint is a mapping with keys format and value . We currently
support only ACSL expressions of the form \result <op> <const_expression> ,
where <op> is one of == , != , <= , < , > , >= and <const_expression> is a
constant expression. The value of format has to be acsl_expression .

target This type of requirement can be used only with action follow and it
marks the program location where the property is violated. More precisely,
the location points at the first character of the statement or full expression
whose evaluation is sequenced directly before the violation occurs, i.e., there
is no other evaluation sequenced before the violation and after the sequence
point associated with the location . This also implies that it can point to a
function call only if it calls a function of the C standard library that violates
the property or if the function call itself is the property violation. The key
constraint has to be omitted.

Waypoints are organized into segments. Each segment is a sequence of zero or
more waypoints with action avoid and exactly one waypoint with action follow
at the end. A segment is called final if it ends with the target waypoint and it is
called normal otherwise.

Finally, we can describe the content part of violation_sequence entries which
represent violation witnesses. The value of content is a sequence of zero or more
normal segments and exactly one final segment at the end. The structure of
content and its nested items are summarized in Table 3.

Semantics. Each violation witness represents a set of some program executions
violating the specified property. The witness is considered to be valid if the set is
nonempty.

Let us consider a violation witness with n ≥ 1 segments. An execution is
represented by this witness, if the execution can be divided into n parts such
that, for each 1 ≤ i ≤ n, the i-th part matches the corresponding segment of the
witness. An execution part matches a normal segment if

– it does not pass any avoid waypoint of the segment,
– it ends in the moment when the sequence point corresponding to the follow

waypoint of the segment is entered for the first time in the execution part,
and

– the follow waypoint is passed in this moment.

The final execution part matches the final segment if

– it does not pass any avoid waypoint of the segment and
– it violates the considered property during execution of the statement identified

by the target waypoint.

An assumption waypoint is evaluated at the sequence point immediately before
the waypoint location. The waypoint is passed if the given constraint evaluates to
true. A branching waypoint is evaluated at the sequence point immediately after
evaluation of the controlling expression of the corresponding branching statement.



10 P. Ayaziová, D. Beyer, M. Lingsch-Rosenfeld, M. Spiessl, and J. Strejček

Table 3: Structure of the content part of entries representing violation witnesses
Key Value Description

content sequence a sequence of zero or more normal segment
elements and one final segment at the end

description of segment

segment sequence

a sequence of zero or more waypoint elements
with action: avoid and one waypoint with
action: follow at the end; the final segment
ends by waypoint with type: target

description of waypoint
waypoint mapping a basic building block of violation witnesses

content of waypoint
action follow the waypoint should be passed through

avoid the waypoint should be avoided
type assumption restriction on variable values given by an expression

branching restriction specifying the result of a branching
function_enter restriction saying that a function is entered
function_return restriction on the result of a function call
target identification of a location of the property violation

location mapping the location of the waypoint; see Table 2

constraint mapping the constraint of the waypoint; not allowed with
type: function_enter and type: target

content of constraint
format c_expression for type: assumption , constraints are C expressions

acsl_expressions for type: function_return , constraints are specific
ACSL expressions; not allowed for other type values

value scalar the actual constraint

The waypoint is passed if the resulting value of the controlling expression corre-
sponds to the given constraint. A function_enter waypoint is evaluated at the
sequence point immediately after evaluation of all arguments of the function call.
The waypoint is passed without any additional constraint. A function_return
waypoint is evaluated immediately after evaluation of the corresponding function
call. The waypoint is passed if the returned value satisfies the given constraint.

3 Evaluation

This section presents experiments with validation of verification results using both
formats (1.0 and 2.0) to answer the following research questions:

– RQ 1: How does the performance of the validation of the new witness format
compare to the old witness format?



Software Verification Witnesses 2.0 11

– RQ2: Does the new format improve attributes related to readability when
compared to the old format?

In the experiments, the following tools were used.

– CPAchecker [13, 27] is a verifier and witness validator that can produce
and validate both correctness and violation witnesses in both formats. The
experiments are based on version 0af0e41240.

– Symbiotic [28] is a verifier that can produce violation witnesses in both
formats. We use version 9c278f9.

– Symbiotic-Witch2 [15] is a witness validator for violation witnesses in the
old format (1.0). The experiments are based on version svcomp24.

– Witch3 [29] is a new witness validator based on similar principles as Symbiotic-
Witch2, but designed for violation witnesses in format 2.0. The tool is made
of Symbiotic in version b011ec9 and Witch-Klee in version 6dabb94.

– UAutomizer [30] is a verifier and witness validator that can produce both
correctness and violation witnesses in both formats and validate correctness
witnesses in both formats and violation witnesses only in format 1.0. We use
version 0.2.4-?-8430d5a-m and version 0.2.4-dev-0e0057c for validation
of YAML and GraphML correctness witnesses respectively.

Note that the support of the new witness format in all mentioned tools except
UAutomizer has been implemented by authors of this paper.

For the experiments, we used all verification tasks of SV-COMP 2024 where
the property to be verified is unreachabilty of error function, i.e., the specification
used in Figs. 1 and 2.

Benchmark Environment. For conducting our evaluation, we use BenchExec
to ensure reliable benchmarking [31]. All benchmarks are performed on machines
with an Intel Xeon E5-1230 CPU (4 physical cores with 2 processing units each),
33GB of RAM, and running Ubuntu 22.04 as operating system. Each verification
and witness validation task is executed with resource limits used in SV-COMP,
i.e., 900 s of CPU time3, 15 GB of memory, and 1 physical core (2 processing
units).

3.1 Evaluation Results for RQ 1 (Validation Performance)

One of the most important questions is whether the validation using the new
format is as effective and efficient as with the old witness format.

Correctness Witnesses. CPAchecker generated correctness witnesses in both
formats in SV-COMP 2024. The YAML witnesses from CPAchecker were then
validated by CPAchecker and UAutomizer. This allows for a direct comparison
as shown in Fig. 3. We can observe in Fig. 3a that the validation performance
of CPAchecker is largely identical when comparing both formats. This is to
be expected, as the only thing that CPAchecker extracts from the GraphML
3 Except violation witness validation, where the convention is to use 90 s of CPU time.

https://gitlab.com/sosy-lab/software/cpachecker/-/tree/0af0e41240
https://github.com/staticafi/symbiotic/tree/9c278f95ba
https://zenodo.org/records/10211062
https://github.com/ayazip/symbiotic/tree/b011ec951a
https://github.com/ayazip/witch-klee/tree/6dabb9441f
https://zenodo.org/records/10223333
https://zenodo.org/records/10203545


12 P. Ayaziová, D. Beyer, M. Lingsch-Rosenfeld, M. Spiessl, and J. Strejček

0 1 000 2 000 3 000 4 000 5 000

10

100

1 000

n-th fastest result

C
P

U
ti

m
e

(s
)

Validation on v1.0
Validation on v2.0

(a) Validation using CPAchecker

0 1 000 2 000 3 000

100

1 000

n-th fastest result

C
P

U
ti

m
e

(s
)

Validation on v1.0
Validation on v2.0

(b) Validation using UAutomizer

Fig. 3: Correctness witnesses produced by CPAchecker: Quantile plots for the
time taken for validation of the old and new witnesses for two different validators

Table 4: Correctness witnesses produced by CPAchecker: Validation with
CPAchecker and UAutomizer

Witnesses v1.0 Witnesses v2.0

Validator Witnesses Confirmed Refuted Confirmed Refuted

CPAchecker 6 729 4 685 0 4 741 0
UAutomizer 6 729 2 478 109 2 959 2

witnesses are the invariants and their locations, and this is also the information
that is present in and extracted from the witnesses in format 2.0.

For UAutomizer, the new format 2.0 substantially improves both the speed
of validation and the number of witnesses that can be validated. Besides aiding
in verification of the original property during validation, a witness can also add
additional obligations for the validator to validate. This is the case here, where the
extensive automaton that is embedded into CPAchecker’s witnesses in format 1.0
is harder to prove correct for UAutomizer than the much simpler set of invariants
that is present in the witnesses in format 2.0. Table 4 shows numbers of confirmed
and refuted witnesses.

Violation Witnesses. We present the results of our evaluation regarding RQ 1
for violation witnesses in Fig. 4, which is complemented by Table 5 with the
concrete number of validated and refuted witnesses. For witnesses generated
by CPAchecker (cf. Fig. 4a), Witch3 is able to confirm significantly more
witnesses in the new format than Symbiotic-Witch2 is able to confirm in the old
format. Due to the large number of features and underspecified semantics of the
GraphML format, Symbiotic-Witch2 does not support all the attributes used
in the GraphML witnesses. Ignoring these features leads to a larger state-space



Software Verification Witnesses 2.0 13

0 500 1 000 1 500 2 000
.1

1

10

100

1 000

10 000

n-th fastest result

C
P

U
ti

m
e

(s
)

CPAchecker validation on v1.0
CPAchecker validation on v2.0
Sym-Witch2 validation on v1.0

Witch3 validation on v2.0

(a) Validation of violation witnesses
generated by CPAchecker

0 500 1 000 1 500
.1

1

10

100

1 000

10 000

n-th fastest result

C
P

U
ti

m
e

(s
)

CPAchecker validation on v1.0
CPAchecker validation on v2.0
Sym-Witch2 validation on v1.0

Witch3 validation on v2.0

(b) Validation of violation witnesses
generated by Symbiotic

Fig. 4: Violation witnesses: Quantile plots for the time taken for validation of the
old and the new witnesses generated by two different verifiers for two different
validators

Table 5: Results of validating CPAchecker’s and Symbiotic’s violation witnesses
with different validators; Witch stands for Symbiotic-Witch2 when validating
old witnesses, and for Witch3 when validating new witnesses.

Witnesses v1.0 Witnesses v2.0

Verifier Validator Produced Confirmed Refuted Confirmed Refuted

CPAchecker CPAchecker 2 011 1 880 35 1 657 9
CPAchecker Witch 2 011 798 0 1 312 17
Symbiotic Witch 1 556 1 533 5 1 516 0
Symbiotic CPAchecker 1 556 1 319 29 1 315 27

that needs to be explored during validation, which results in more timeouts, or
misinterpreting information in the witness and missing the described error. This
is not the case for Witch3 as it supports the full set of features of the new format
and makes use of all the information provided in the witness. For CPAchecker
there is still a relatively small performance gap between validation with the new
and old format. This is not surprising, as the GraphML-based format is inspired
by the specification-automata language that CPAchecker uses internally, so
achieving a similar performance requires still some more engineering.

For witnesses generated by Symbiotic (cf. Fig. 4b), we can observe that the
number of new witnesses confirmed by Witch3 is almost the same as the number of
old witnesses confirmed by Symbiotic-Witch2. Thus, both validation approaches
are very close when it comes to effectiveness. This is also the case for CPAchecker,
which manages to confirm almost the same number of witnesses in both formats.



14 P. Ayaziová, D. Beyer, M. Lingsch-Rosenfeld, M. Spiessl, and J. Strejček

Table 6: Different attributes of correctness witnesses in version 1.0 and 2.0
generated by CPAchecker

Witnesses v1.0 Witnesses v2.0

Attribute Min Median Max Min Median Max

Length in Lines of Code 53 1 536 1 014 533 18 28 1 058
Size in kB 3 52 35 573 1 1 965
Number of Nodes 3 114 26 899 - - -
Number of Edges 2 198 142 016 - - -
Number of Invariants 0 1 162 0 1 104

The new format for correctness witnesses does not reduce validation perfor-
mance, for UAutomizer it shows a significant advantage over the old format.
For violation witnesses, Witch3 handling the new format performs better than
Symbiotic-Witch2 on the old format, while there is still room for improvement
of CPAchecker as it performs slightly better on the old format.

3.2 Evaluation results for RQ 2 (Witness Readability)

Another important question is concerned with the attributes corresponding to
the readability of the files encoding the witnesses. In particular, we are interested
in the size and length of the witnesses, since this has a large effect on how easy
they are to be read and understood by humans and machines.

Table 6 provides an overview of different attributes of the two versions of
witnesses produced by CPAchecker for correctness. Table 7 does the same for
violation witnesses produced by CPAchecker and Symbiotic. Some attributes
are only applicable to one of the two versions of witnesses.

For correctness witnesses we can see that the new witnesses are usually very
small in comparison to the old witnesses. This is because the new witnesses encode
only the invariants, while the old witnesses encode information about the control-
flow of the program. One explanation for the difference is that witnesses in version
1.0 roughly scale with the size of the program. While witnesses in version 2.0 scale
only with respect to the amount of invariants, which for CPAchecker is roughly
correlated to the amount of function calls and loops. As we saw in Sect. 3.1, this
extra information is not necessarily relevant for validation.

For violation witnesses, we see that, apart from a small factor due to overhead
in describing the automaton, both formats are similar in all metrics. This is not
surprising, as both formats encode similar information about an error path. There-
fore, they both roughly scale with the amount of assumption for nondeterministic
variables and the amount of branching decisions in the error path.

The tables show that the new witnesses are usually much shorter than the old
witnesses. As we have seen in Sect. 3.1, this does not have a negative impact on
the validation performance, since the information most relevant for validation is



Software Verification Witnesses 2.0 15

Table 7: Different attributes of violation witnesses in version 1.0 and 2.0 generated
by CPAchecker and Symbiotic

Witnesses v1.0 Witnesses v2.0

Attribute Min Median Max Min Median Max

Length in Lines of Code 12 372 258 730 27 171 114 460
Size in kB 2 14 9 098 1 6 3 071
Number of Nodes 1 38 28 304 - - -
Number of Edges 0 42 28 793 - - -
Number of Waypoints - - - 1 13 9 537

retained. Having less information makes it much easier for a verification engineer
to understand the witness and use it in some further processing steps.

In summary, witnesses in version 2.0 are generally much smaller and easier to
read than witnesses in version 1.0, while retaining all important data.

3.3 Threats to Validity

Internal Validity. We used the benchmarking framework BenchExec [31] to
run the experiments, which uses the most modern Linux features for reliable
benchmarking. This tool also makes sure to never run two different executions
on the same physical core, in order to avoid interference of shared computing
resources. Our validation tools might contain bugs, which could lead to wrong
conclusions, however, our claim is that the new format works already sufficiently
well to serve as an alternative format.

External Validity. The conclusions about the validators might not hold for other
validators that will be developed in the future, also, witnesses generated by
other verifiers might have different characteristics. However, other tools are not
expected to deviate much from the presented witnesses, because they would serve
the same purpose of testifying the bug or proof. Our experiments were done on a
large benchmark set, which is also used in competitions, but it could still be the
case that there are witnesses and programs for which the results presented are
not applicable. Since extending and improving the witness format is an ongoing
process, we expect that if this is the case, it will be adequately addressed in the
future.

4 Version 1.0 vs. Version 2.0

The witness format 2.0 is closely tied to the actual program syntax. While the
format 1.0 uses an automaton largely independent of the program syntax and
closely tied to the program representation as control-flow automata internally used
by some verifiers. Due to this, the format 2.0 is more succinct, has well-defined



16 P. Ayaziová, D. Beyer, M. Lingsch-Rosenfeld, M. Spiessl, and J. Strejček

Table 8: Tools with some support of witnesses format 2.0 and their abilities to gen-
erate/verify correctness/violation witnesses in format 1.0/2.0 in SV-COMP 2024;
tools where the support of witness format 2.0 was implemented by the authors of
this paper are typeset in bold

Witness Generation Witness Validation

Correctness Violation Correctness Violation

Tool v1.0 v2.0 v1.0 v2.0 v1.0 v2.0 v1.0 v2.0

CPAchecker • • • • • • • •
Symbiotic • • •
Symbiotic-Witch2 •
Witch3 •
UAutomizer • • • • • •
UKojak • • •
UTaipan • • •
UGemCutter • • •
Mopsa • • •
CPV • • •
Goblint • • •

semantics, and is easier to understand by humans. On the other hand, format 1.0
is more expressive, for example it can define different loop invariants for the same
loop, when two different paths are taken to reach the loop.

Currently, the format 2.0 has the same practical limitations as the format 1.0.
In the case of correctness witnesses, they have not yet been defined for concurrency
safety, memory safety and for termination. Violation witnesses have not yet been
defined for concurrency safety. There are also features which are not yet supported
by the new format but which are straightforward extensions, such as support
for Java and violation termination witnesses. Extending witnesses to be able
to validate more programs and specifications is ongoing work, we expect that
the simplification of the syntax and clarification of the semantics with format
version 2.0 will make it easier to extend the format in the future.

In order to validate our concept of the new format, we reported our initiative
to the SV-COMP community, and the jury made a decision to immediately include
the new format as an alternative to the existing format, in order to quickly adopt
it and improve the state of the art. This was seen in SV-COMP 2024, where 8
verifiers and 4 validators supported the correctness witnesses v2.0 and 2 verifiers
and 2 validators supported the violation witnesses v2.0. Table 8 shows all these
tools and their support of witnesses formats in detail.

This also shows the large interest the software verification community has in
the new format, since the first mention of the format for correctness witnesses
was only in September 20214 and the work on the violation witnesses part of the
new format started only in April 2023.
4 https://gitlab.com/sosy-lab/benchmarking/sv-witnesses/-/merge_requests/44

https://gitlab.com/sosy-lab/benchmarking/sv-witnesses/-/merge_requests/44


Software Verification Witnesses 2.0 17

5 Conclusion

Verification witnesses are an important part of the software-verification ecosystem.
Just like verification tools, specification formats, and witness validators, there is
also a need to improve the format for verification witnesses. This paper introduces
the witness format version 2.0, which changes the container format from GraphML
to YAML, has more concise data representation, and has a clearly defined semantics
independent from control-flow automata. Besides describing the syntax and
semantics of the new format, we also evaluated the effectiveness and efficiency
induced by the new format. In sum, the new witnesses are much smaller and the
experimental results show a significantly improved confirmation rate for some
validators: using the new format, UAutomizer can confirm 481 more correctness
witnesses (Table 4) and Witch3 can confirm 514 more violation witnesses (Table 5).
Furthermore, shortly after we proposed this new format, already seven other tools
support the format, which is an indicator that the developers value the new
format.

Data-Availability Statement. A reproduction package (that includes all soft-
ware and data that we used for our experiments) is available on Zenodo [32].

Funding Statement. P. Ayaziová and J. Strejček were supported by the Czech
Science Foundation grant GA23-06506S. D. Beyer, M. Lingsch-Rosenfeld, and
M. Spiessl were supported by the Deutsche Forschungsgemeinschaft (DFG) –
378803395 (ConVeY).

References

1. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

2. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

3. Beyer, D.: Software verification and verifiable witnesses (Report on SV-
COMP 2015). In: Proc. TACAS. pp. 401–416. LNCS 9035, Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0_31

4. Beyer, D., Strejček, J.: Case study on verification-witness validators: Where we
are and where we go. In: Proc. SAS. pp. 160–174. LNCS 13790, Springer (2022).
https://doi.org/10.1007/978-3-031-22308-2_8

5. Beyer, D.: Competition on software verification and witness validation: SV-
COMP 2023. In: Proc. TACAS (2). pp. 495–522. LNCS 13994, Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_29

6. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey
and unifying component framework. In: Proc. ISoLA (1). pp. 143–167. LNCS 12476,
Springer (2020). https://doi.org/10.1007/978-3-030-61362-4_8

7. Beyer, D., Haltermann, J., Lemberger, T., Wehrheim, H.: Decomposing Software
Verification into Off-the-Shelf Components: An Application to CEGAR. In: Proc.
ICSE. pp. 536–548. ACM (2022). https://doi.org/10.1145/3510003.3510064

http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-031-22308-2_8
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1145/3510003.3510064


18 P. Ayaziová, D. Beyer, M. Lingsch-Rosenfeld, M. Spiessl, and J. Strejček

8. Beyer, D., Dangl, M.: Verification-aided debugging: An interactive web-service for
exploring error witnesses. In: Proc. CAV (2). pp. 502–509. LNCS 9780, Springer
(2016). https://doi.org/10.1007/978-3-319-41540-6_28

9. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3–23.
LNCS 10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

10. Beyer, D., Spiessl, M., Umbricht, S.: Cooperation between automatic and interactive
software verifiers. In: Proc. SEFM. p. 111–128. LNCS 13550, Springer (2022).
https://doi.org/10.1007/978-3-031-17108-6_7

11. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022).
https://doi.org/10.1145/3477579

12. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML
progress report. In: Graph Drawing. pp. 501–512. LNCS 2265, Springer (2001).
https://doi.org/10.1007/3-540-45848-4_59

13. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable soft-
ware verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_16

14. Chalupa, M., Řechtáčková, A., Mihalkovič, V., Zaoral, L., Strejček, J.: Symbiotic 9:
String analysis and backward symbolic execution with loop folding (competition
contribution). In: Proc. TACAS (2). pp. 462–467. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_32

15. Ayaziová, P., Strejček, J.: Symbiotic-Witch 2: More efficient algorithm and
witness refutation (competition contribution). In: Proc. TACAS (2). pp. 523–528.
LNCS 13994, Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_30

16. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certi-
fying algorithms. Computer Science Review 5(2), 119–161 (2011).
https://doi.org/10.1016/j.cosrev.2010.09.009

17. Turing, A.: Checking a large routine. In: Report on a Conference on High Speed Au-
tomatic Calculating Machines. pp. 67–69. Cambridge Univ. Math. Lab. (1949), https:
//turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-8

18. Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.: Termination
competition (termCOMP 2015). In: Proc. CADE. pp. 105–108. LNCS 9195, Springer
(2015). https://doi.org/10.1007/978-3-319-21401-6_6

19. Sternagel, C., Thiemann, R.: The certification problem format. In: Proc. UITP. pp.
61–72. EPTCS 167, EPTCS (2014). https://doi.org/10.4204/EPTCS.167.8

20. Järvisalo, M., Berre, D.L., Roussel, O., Simon, L.: The international SAT solver
competitions. AI Magazine 33(1) (2012)

21. Heule, M.J.H.: The DRAT format and drat-trim checker. CoRR 1610(06229) (Oc-
tober 2016)

22. Wetzler, N., Heule, M.J.H., Jr., W.A.H.: Drat-trim: Efficient checking and trimming
using expressive clausal proofs. In: Proc. SAT. pp. 422–429. LNCS 8561, Springer
(2014). https://doi.org/10.1007/978-3-319-09284-3_31

23. Bury, G., Bobot, F.: Verifying models with Dolmen. In: Proc. SMT Workshop.
CEUR Workshop Proceedings, CEUR (2023)

24. Castaño, R., Braberman, V.A., Garbervetsky, D., Uchitel, S.: Model
checker execution reports. In: Proc. ASE. pp. 200–205. IEEE (2017).
https://doi.org/10.1109/ASE.2017.8115633

25. OASIS: Static analysis results interchange format (sarif) version 2.0 (2019)

https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-031-17108-6_7
https://doi.org/10.1145/3477579
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-031-30820-8_30
https://doi.org/10.1016/j.cosrev.2010.09.009
https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-8
https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-8
https://doi.org/10.1007/978-3-319-21401-6_6
https://doi.org/10.4204/EPTCS.167.8
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1109/ASE.2017.8115633


Software Verification Witnesses 2.0 19

26. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C specification language version 1.17 (2021), available at
https://frama-c.com/download/acsl-1.17.pdf

27. Baier, D., Beyer, D., Chien, P.C., Jankola, M., Kettl, M., Lee, N.Z., Lemberger,
T., Lingsch-Rosenfeld, M., Spiessl, M., Wachowitz, H., Wendler, P.: CPAchecker
2.3 with strategy selection (competition contribution). In: Proc. TACAS. LNCS ,
Springer (2024)

28. Jonáš, M., Kumor, K., Novák, J., Sedláček, J., Trtík, M., Zaoral, L., Ayaziová,
P., Strejček, J.: Symbiotic 10: Lazy memory initialization and compact symbolic
execution (competition contribution). In: Proc. TACAS. LNCS , Springer (2024)

29. Ayaziová, P., Strejček, J.: Witch 3: Validation of violation witnesses in the witness
format 2.0 (competition contribution). In: Proc. TACAS. LNCS , Springer (2024)

30. Heizmann, M., Bentele, M., Dietsch, D., Jiang, X., Klumpp, D., Schüssele, F., Podel-
ski, A.: Ultimate automizer and the abstraction of bitwise operations (competition
contribution). In: Proc. TACAS. LNCS , Springer (2024)

31. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

32. Ayaziová, P., Beyer, D., Lingsch-Rosenfeld, M., Spiessl, M., Strejček, J.: Reproduction
package for SPIN2024 article ‘Software verification witnesses 2.0’. Zenodo (2024).
https://doi.org/10.5281/zenodo.10826204

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://frama-c.com/download/acsl-1.17.pdf
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.5281/zenodo.10826204
http://creativecommons.org/licenses/by/4.0/

	Software Verification Witnesses 2.0 

