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Abstract. Software quality is often evaluated by testing the software on
an adequate test suite, e.g., a test suite achieving certain or high coverage
of the software. Manually generating such test suites is tedious. Thus,
several automatic test-case generation approaches were developed to sup-
port this task. Approaches based on software model checking typically
achieve high coverage and have been shown to be sufficiently efficient in
the past. Yet, there does not exist a test-case generation approach that
builds upon the automata-based approach to software model checking
e.g., successfully used by Ultimate Automizer. To close this methodical
gap, we present Ultimate TestGen, a test-case generator built on Ulti-

mate Automizer. An experimental comparison of Ultimate TestGen against
a closely related, up-to-date test-case generation approach reveals that
Ultimate TestGen generates test suites that achieve the same or higher
branch coverage for nearly 75% of the evaluated programs.

1 Introduction

Testing is a widely adopted technique to inspect software quality and structural
coverage criteria are common metrics to judge the adequacy of generated test
suites. Since manually generating test cases or even entire test suites is labori-
ous, several automatic test-case generation techniques have been suggested in the
past. Many of them generate test suites for structural coverage criteria, in par-
ticular branch coverage, thereby focusing on test input generation. They range
from random testing and fuzzing [37,32,33,42] over search-based testing [34] to
symbolic execution [16,38] and software model checking [7,41,8,28,29,9].

By design, approaches based on software model checking achieve high cov-
erage because they check the reachability of each individual test goal. While
one might think that checking the reachability of test goals is too expensive,
advances in verification technology [5] allowed for the development of rather ef-
ficient test-case generation approaches like e.g., CoVeriTest [9], FuSeBMC [1],
or VeriFuzz [35], which use (bounded) software model checking.

Inspired by the success of these approaches and the success of the software
model checker Ultimate Automizer [5], we propose the test-case generation
technique Ultimate TestGen. Ultimate TestGen is based on the automata-
based approach to software model checking [27] that is employed by Ultimate
Automizer [25] and that has not been used for test-case generation before.
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To turn the software model checker Ultimate Automizer into a test-case
generator, we employ an approach widely-used when generating test cases with
verifiers. Namely, we generate test cases from counterexamples [7,41]. Besides
transforming counterexamples into tests, we therefore need to encode the hit of
a (new) test goal g as a property violation, i.e., Ultimate Automizer must accept
program execution traces that reach the test goal g. To become efficient, we follow
e.g., CoVeriTest [9] and consider multiple test goals at once. Hence, we need
Ultimate Automizer to continue verification after detecting a counterexample.
Meanwhile, it should avoid reporting counterexamples that only consider already
covered test goals. In contrast to existing approaches [21,9,39], which remove test
goals, we achieve this by abstracting such counterexample traces by automata
and then restricting Ultimate Automizer’s exploration to program execution
traces that are not accepted by any of those automata.

We implemented the above extensions into Ultimate Automizer. The re-
sulting tool Ultimate TestGen allows us to choose between two configurations:
all and incr. Ultimate TestGen-all starts test-case generation with all test
goals at once. In contrast, Ultimate TestGen-incr incrementally increases the
set of considered test goals, adding more promising test goals earlier. A test goal
will be considered more promising if it may cover a higher number of additional
test goals when covered. We experimentally compare both configurations on the
benchmark programs used in the International Competition on Software Testing
(Test-Comp) [6]. Our evaluation shows that Ultimate TestGen-all achieves
equal or higher coverage for 97% of the benchmark programs while Ultimate
TestGen-incr generates significantly fewer test cases. Furthermore, a compar-
ison with CoVeriTest, an up-to-date Test-Comp participant, which like Ulti-
mate TestGen uses counterexample-guided abstraction refinement, reveals that
Ultimate TestGen-all achieves the same coverage for about 60% of the bench-
marks and even higher coverage for 5% of the programs. Comparing Ultimate
TestGen-all against CoVeriTest’s component based on predicate abstraction,
the most similar approach to Ultimate TestGen, exhibits that Ultimate Test-
Gen-all even achieves higher coverage for 30% of the benchmark programs.

2 The Basics of Software Model Checking with Automata

Our goal is to use an automata-based approach to software model checking [27] to
detect feasible error traces (i.e., counterexamples) in programs and then generate
tests from them. This section introduces the types of automata used by this
approach and fixes the meaning of a feasible error trace.

2.1 Program Automata and their Feasible Error Traces

We consider programs that sequentially execute statements from a fixed set Σ.
For our presentation, we assume that Σ contains assignments and assume state-
ments over a set V of (integer) variables.1. Following literature [27], we then
1 In our implementation, we support C programs.
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0: r = 1;
1: while x > 0
2: r = r*x;
3: x = x - 1;
4: if x < 0
5: r = 0;
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Fig. 1. Source code (left) and program automaton (right) of our example program fac

model a program together with its correctness property by a (program) auto-
maton AP = (L, δP , ℓ0, FP). Thereby, the set L represents the program counter
values including the initial program counter ℓ0 ∈ L, while δP ⊆ L×Σ×L denotes
the control-flow edges, which describe which statements can be executed at a
given program location and where to proceed after the statement’s execution. In
addition, the set FP ⊆ L describes the error locations that model the correct-
ness property of a program. More concretely, program executions reaching any
of the error locations in FP violate the program’s correctness property. Thus,
FP depends on the property to be checked. Since we aim to generate tests from
property violations, we use FP to characterize the coverage of test goals, in our
case program branches (i.e., assume statements in the program automaton).

Figure 1 shows the code and the program automaton of our example pro-
gram fac, which computes the factorial of x if x is non-negative. The automaton
contains one edge per assignment and two assume-statement edges per condition
of each if or while statement, namely one for each outcome. Moreover, its error
locations are the end locations of the program’s assume statements (branches).

To generate tests from property violations, our approach inspects error traces,
i.e., sequences of statements that are allowed by the program syntax and lead to
a property violation. Formally, a sequence of statements π ∈ Σ∗ is an error trace
of a program if its program automaton AP accepts π. Since error traces only con-
sider the program’s syntax, not all error traces can be observed during program
execution. An example of a non-observable error trace is the sequence of state-
ments r=1;,x>0,r=r*x;,x=x-1;,!(x>0),x<0,r=0; of program fac. Note that
it is unobservable because it visits the loop once (x>0,r=r*x;,x=x-1;,!(x>0))
and after loop execution, statement x<0 conflicts with the possible values of
variable x, which are not smaller than zero. Due to such potential conflicts be-
tween variable values and statements, our approach needs to check that an error
trace is feasible. An error trace is feasible if there exists a program execution
that executes the exact same sequence of statements as the error trace. Since
an error trace is syntactically allowed by the program, to show its feasibility, it
remains to be proven that it does not conflict with the variable values during
execution, i.e., it respects the statements’ semantics. A statement’s semantics
basically defines for which variable values the statement is executable and what
the variable values resulting from executing the statement are. We represent the
variable values using data states that assign to every program variable a value
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of its domain. On top of the set D of data states, we then define the seman-
tics of a statement stmt by a (partial) function SPstmt : D ⇀ D. For assume
statements stmt?, function SPstmt? is a partial identity function that is defined
for data state d if the assume (a Boolean expression) evaluates to true in data
state d, i.e., d |= stmt?. For assignments stmt=, function SPstmt= is total and
denotes the strongest-post operator of the semantics. Finally, an (error) trace
π = stmt1, . . . , stmtn ∈ Σ∗ is feasible if there exists a sequence of data states
d0, d1, . . . , dn such that SPstmti(di−1) = di holds for all 1 ≤ i ≤ n. Technically,
we check the feasibility of an error trace π by first converting it into single
static assignment (SSA) form [20]. Then, we encode its SSA form into a logic
formula φπ that will be satisfiable if π is feasible. Finally, we use a satisfiable
modulo theory (SMT) solver to determine the feasibility of φπ.

2.2 Abstracting Traces via Interpolant and Error Automata

To generate a test suite that achieves a high coverage, we intend the software
model checker to detect one feasible error trace per test goal, i.e., per error lo-
cation from FP . To efficiently detect those feasible error traces, we successively
exclude irrelevant error traces from the search space of the model checker. More
concretely, we exclude error traces for which we know that they (a) are infea-
sible or (b) do not contribute to the coverage because they end in an already
covered test goal. Technically, we build automata Ai that each accept a subset
of irrelevant error traces and subtract them from the program automaton.

Whenever we detect that an error trace π is infeasible, we build an interpolant
automaton [26] that accepts the analyzed, infeasible trace plus some infeasible
traces that have a similar reason for infeasibility. Thereby, each interpolant au-
tomaton encodes the reason for infeasibility of the accepted traces. Formally, an
interpolant automaton AI = (QI , δI , q0, FI , dI) consists of a set of states QI
including the initial state q0 and the accepting states FI as well as a transition re-
lation δI ⊆ QI×Σ×QI . To record the infeasibility argument of accepted traces,
it also contains a total function dI : QI → 2D that assigns to each state a set of
data states that overapproximate the reachable data states while still allowing to
prove infeasiblility of accepted traces.2 To guarantee the infeasibility of accepted
traces, each interpolant automaton ensures that (1) the initial state allows any
data state dI(q0) = D, (2) the transition relation respects the statement’s se-
mantics, i.e., ∀(q, stmt, q′) ∈ δ : {d′ | ∃d ∈ dI(q) : SPstmt(d) = d′} ⊆ dI(q

′), and
(3) final states do not allow any data state, i.e., ∀qf ∈ FI : dI(qf ) = ∅. Together
properties (1)–(3) ensure that any accepted trace is infeasible.

Figure 2 shows one interpolant automaton for the infeasible error trace
π =r=1;,x>0,r=r*x;,x=x-1;,!(x>0),x<0,r=0; from above, which might be
constructed by Ultimate Automizer. The figure uses assertions known from
Hoare logic to describe the set of data states assigned to each state. The au-
tomaton encodes the error trace into a corresponding sequence of automaton

2 In practice, the sets of data states are represented by assertions.
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Fig. 2. Example of an interpolant automaton

transitions. In addition, the states are annotated with interpolants (the asser-
tions), which are derived by splitting the encoding φπ at the position of the state
and computing the interpolant. Thereafter, the automaton is enriched by appro-
priate backward edges resulting from loops that keep the reason of infeasibility.
In our case, the automaton accepts any error trace that executes the loop of
example program fac at least once and thereafter enters the if branch. We refer
to [26] for more details on how to construct an interpolant automaton based on
the proof of unsatisfiability of an error trace and interpolation.

Whenever we detect a feasible error trace π, we first generate a test as ex-
plained in the next section. The generated test visits all test goals on the error
trace. Thus, error traces ending in an error location associated with a visited
test goal are irrelevant in future because they only contribute to the cover-
age when accidentally visiting other uncovered test goals. To exclude such er-
ror traces from future analysis, for each of the error locations ℓe visited by
π we will construct an error automaton if no error automaton already ex-
ists for ℓe. Given an error location, the error automaton accepts any trace
that ends in that error location. For the construction of the error automa-
ton, we make use of the following structural properties of the error locations
that we consider for test-case generation. First, the error locations will have
exactly one incoming transition3. Second, we will label statements such that
the labeled statement on the incoming transition is unique in the program au-
tomaton, i.e., the statement does not occur with the same label on any other
transition of the program automaton. Hence, we can use the (labeled) state-
ment to detect whether the error location is reached. Based on these assump-
tion, the error automaton for an error location ℓe with corresponding incoming

q0 qe
x>0

x>0Σ \ {x>0}

Σ \ {x>0}

Fig. 3. Example of an error automaton

transition (ℓ, stmt, ℓe) consists of two
states, the initial state q0 and the fi-
nal state qe. If the automaton observes
the statement stmt, it transitions to
the final state qe and otherwise, it
transitions to q0. Formally, the auto-
maton is defined as follows.

AE =

(
{q0, qe},

{(q0, stmt, qe), (qe, stmt, qe)}∪
{(q, stmt′, q0) | (q = q0 ∨ q = qe) ∧ stmt′ ∈ Σ \ {stmt}} , {q0}, {qe}

)
3 Note that this property is violated for error location ℓ6 of our example program.

However, our encoding of test goals, which we explain later, ensures this property.
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Algorithm 1 Ultimate TestGen-all employing automata-based software
model checking [26] for test-case generation
Input: Program AP = (L, δP , ℓ0, ∅), test goals G ⊆ δP
1: APtest := encode_test_goals(AP , G);
2: test_suite := ∅; APrel := APtest

3: while L(APrel) ̸= ∅ do
4: determine π ∈ L(APrel)
5: (result, witness) := check_feasibility(π);
6: if result = true then
7: test_suite := test_suite ∪ generate_test_case(π, witness);
8: Aπ := generate_error_automata(π);
9: else

10: Aπ := generate_interpolant_automata(π, witness);
11: APrel := APrel \Aπ;
12: return test_suite;

Figure 3 shows the error automaton for the feasible error trace r=1;,x>0 of
program fac. The next section explains how to use the automata introduced in
this section for test-case generation.

3 From Model Checking to Test-Case Generation

Our goal is to turn the software model checker Ultimate Automizer into a test-
case generator that detects one feasible error trace per test goal and transforms
it into a test case. To this end, we adapt its model checking approach.

Before we explain the adaption, let us recapture the original approach [26].
Given a program automaton, Ultimate Automizer iteratively refines an overap-
proximation of the feasible error traces until the overapproximation is empty, i.e.,
it proves that the program is correct, or Ultimate Automizer detects a feasible
error trace, i.e., it finds a property violation. First, the initial overapproximation
becomes the program automaton, which accepts all error traces of the program.
Next, each iteration selects an error trace π from the current overapproximation
and checks its feasibility. If π is feasible, a violation is found and π is returned
as a counterexample. If π is infeasible, an interpolant automaton is constructed
with the help of the infeasibility proof and the overapproximation is refined.
More concretely, the traces accepted by the interpolant automaton are excluded
from the overapproximation and then the subsequent iteration starts.

Next, let us discuss how to adapt the above procedure for test-case genera-
tion. Algorithm Ultimate TestGen-all (Alg. 1) describes the adapted proce-
dure. For now, let us assume that we already encoded the test goals into the
program and let us focus on lines 2–12. The algorithm maintains two important
data structures: test_suite, which contains the generated test cases, and the
overapproximation APrel

of feasible and relevant error traces. Like the original
approach, the initial overapproximation becomes the program automaton. In
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addition, the initial test suite is empty, i.e., no test cases have been generated.
Furthermore, the while loop realizes the iterative refinement. At the beginning
of each iteration, the algorithm checks whether the overapproximation APrel

contains any error trace. Since the overapproximation is described by an auto-
maton, the algorithm checks whether the language of the automaton is empty. If
the language is empty, no relevant error traces exist, i.e., all error locations are
covered4, and we return the test suite. Otherwise, we perform the next loop iter-
ation. First, we use an A∗ algorithm [23,24] to determine a relevant error trace π
of the program (line 4) and, then, check π’s feasibility as explained in the pre-
vious section. The feasibility check returns the result and a witness, a model
in case of feasibility and the unsatisfiability proof otherwise. If error trace π is
feasible, we deviate from the original approach. Instead of returning π and re-
porting a property violation, we generate a test case from π and the witness (a
model). Afterwards, we generate the error automaton Aπ for the error trace π
as described in the previous section. Remember the error automaton accepts
all traces that end in the same error location as π and, thus, helps us to avoid
that traces that end in already covered error locations (test goals) are found in
future. If π is infeasible, we proceed as the original approach and generate an
interpolant automaton Aπ from π and the witness (a proof of unsatisfiability).
In both cases, we refine the overapproximation by subtracting the generated
automaton Aπ and continue with the next iteration.

Generating Test Cases for Feasible Error Traces After describing the
test-case generation procedure, we now explain in detail how to derive a test
case from a feasible error trace. Like many other tools [7,16,9,1,35], our test
cases only provide test inputs. Hence, they must specify the values for input
parameters and external functions like e.g., random, scanf. To compute these
input values, we use an approach similar to the one of Blast [7]. For the fea-
sibility check, we already computed a SSA-based formula encoding φπ of the
error trace π. Since we generate test cases from feasible error traces, the witness
returned by the feasibility check is a model of φπ. To generate the test case, we
only need to identify the variables in the formula φπ that correspond to inputs,
look up their values in the model, and export their values in the order of the
variables’ occurrence in φπ. For the export, we utilize the format5 used by the
International Competition on Software Testing [6], which allows test execution
with TestCov [13]. For example, consider error trace π =r=1;,x>0 and corre-
sponding formula φπ = r1 = 1 ∧ x0 > 0. The first and only input in φπ is x0.
Given the model {r1 7→ 1, x0 7→ 2} of φπ, we derive the following test case:

<testcase><input>2</input></testcase>

4 We encode the test goals into the program such that all test goals will be covered if
all error locations are covered. Hence, we will abort if all test goals are covered.

5 https://gitlab.com/sosy-lab/test-comp/test-format/-/blob/main/doc/Format.md

https://gitlab.com/sosy-lab/test-comp/test-format/-/blob/main/doc/Format.md
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Fig. 4. Program automaton resulting from encoding branch coverage into our example

Encoding Test Goals So far, we assumed that the test goals are already
encoded into the program. Next, we explain how to actually encode them, i.e., we
explain line 1 of Alg. 1. Like e.g., CoVeriTest [9], we are interested in structural
coverage, in particular branch coverage, that can be expressed as the coverage
of a set G ⊆ δP of control-flow edges. For branch coverage, the set G of test
goals contains all control-flow edges with an assume statement. However, control-
flow edges are not the appropriate format to specify property violations because
program automata specify property violations with error locations. Thus, we
need to perform a testability transformation [22] and translate the coverage of
control-flow edges into the coverage of error locations.

A naive translation would use the predecessors or successors of the test goal
edges as error locations. For branch coverage, the predecessors are decision nodes
forking into two assume statements (i.e., test goals) and are, thus, inappropriate.
Next, we show that successors are inappropriate as well. For this, consider Fig. 1.
We observe that the coverage of assume statement !(x<0) is associated with
error location ℓ6. However, location ℓ6 can be reached via the incoming edge
with statement r=0; without executing the assume statement !(x<0). Hence,
we require a more intricate transformation.

To ensure that test goal coverage is equivalent to coverage of error loca-
tions, our idea is to replace any edge g = (ℓ, stmt, ℓ′) in the test goals by
two successive edges (ℓ, stmt, ℓng ), (ℓ

n
g , true, ℓ

′), thereby introducing a new (in-
termediate) location ℓng . Since an assume statement does not change the data
state and assume true is satisfied by any data state, the two successive edges
(ℓ, stmt, ℓng ), (ℓ

n
g , true, ℓ

′) are semantically identical to g. While we could use lo-
cations ℓng as error locations, constructing appropriate error automata is rather
complex. The error automata from the previous section require unique state-
ments. Thus, we further extend our translation. First, we use labeled assump-
tions trueg, which are semantically equivalent to assumption true, but make
them unique statements and allow us to use the error automata from the previ-
ous section. While this is sufficient, it forces an exploration algorithm to either
detect shallow goals first and, thus, miss the potential of covering multiple goals
at once, or be able to leave accepting states during exploration. To overcome
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this, we use non-determinism. More concretely, we introduce an additional edge
(ℓng , trueg, ℓ

e
g) and use ℓeg instead of ℓng as error location. This leads us to the

following transformation.

Definition 1. Given program automaton AP = (L, δP , ℓ0, ∅) and test goals G ⊆
δP , we define encode_test_goals(AP , G) = (LPtest , δPtest , ℓ0, FPtest), where
– FPtest = {ℓeg | g ∈ G},
– LPtest = L ∪ FPtest ∪ {ℓng | g ∈ G}, and
– δPtest = (δP \G) ∪ {(ℓng , trueg, ℓeg), (ℓ, stmt, ℓng ), (ℓng , trueg, ℓ′) | (ℓ, stmt, ℓ′) ∈ G}.

Figure 4 shows the transformed program automaton APtest
for our example

program fac from Fig. 1. The newly added states are highlighted in yellow. Note
that like our implementation, Fig. 4 uses unique integer numbers to name the
locations instead of the edges g used in the above formalization.

Towards Exploiting Collateral Coverage Often, shorter error traces are
prefixes of longer error traces. For example, r=1;,!(x>0),true2 is a prefix of
r=1;,!(x>0),true2,x<0,true3. In addition, a test case that covers the longer
trace implicitly covers its shorter prefixes and, thus, may cover additional test
goals like !(x>0), which is known as collateral coverage. Hence, covering deeper
test goals (error locations) first and considering collateral coverage may reduce
the size of the test suite and potentially also the test-case generation time. How-
ever, proving unreachability of an error location can be impossible and even
if possible it is typically more expensive than detecting a feasible error trace.
Therefore, we should not indefinitely focus on a certain subset of test goals. Our
suggestion to the problem is to incrementally increase the set of considered goals,
thereby adding deeper goals first.

Algorithm Ultimate TestGen-incr shown in Alg. 2 describes test-case gen-
eration with an incrementally increasing goal set. To this end, Ultimate Test-
Gen-incr uses an additional data structure goals to keep track of the goals
that need to be added. Initially, all goals need to be added. Furthermore, Ulti-
mate TestGen-incr extends the test-case generation loop. At the beginning of
each iteration, it adds a new goal in case unconsidered goals still exist. Our
implementation aims to select deeper goals (error locations) first. Since deeper
states have higher IDs, we select the goal (error location) with the highest ID.
To ensure that we only consider traces that are accepted by one of the currently
considered goal states, we extend the error trace selection with a constraint on
the selected trace. Due to the design of the test goal encoding, our constraint
achieves the desired purpose. Note that we could have used a similar constraint
to exclude traces to already covered error locations. However, we believe that our
automata-based exclusion is better because it reduces the state space. Getting
back to the discussion of our additions, we also consider the collateral coverage
when generating a test case from a feasible error trace. Note that by design of the
test goal encoding, we will cover test goal g if we execute statement trueg and
every prefix of the error trace π that ends in a statement trueg is an error trace
with corresponding error location ℓeg. We use this insight to compute multiple
error automata that also exclude covering collaterally covered test goals. To this
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Algorithm 2 Ultimate TestGen-incr extending test-case generation with sup-
port for collateral coverage
Input: Program AP = (L, δP , ℓ0, ∅), test goals G ⊆ δP
1: APtest := encode_test_goals(AP , G);
2: test_suite := ∅; APrel := APtest ; goals := FPtest ;
3: while goals̸= ∅ ∨ L(APrel) ̸= ∅ do
4: if goals̸= ∅ then
5: pop ℓeg from goals;
6: select π ∈ APrel ending with trueg s.t. ℓeg ∈ FPtest \ goals;
7: (result, witness) := check_feasibility(π);
8: if result = true then
9: test_suite := test_suite ∪ generate_test_case(π, witness);

10: Aπ :=
⋃

πp∈error_prefixes(π)
generate_error_automata(πp);

11: goals := goals\{ℓeg | trueg occurs in π};
12: else
13: Aπ := generate_interpolant_automata(π, witness);
14: APrel := APrel \Aπ;
15: return test_suite;

end, line 10 computes the union of all error automata built for all prefixes πp of
the error trace π that are error traces themselves.6 The last addition in Ulti-
mate TestGen-incr is line 11, which excludes all error locations corresponding
to collaterally covered test goals from the set of unconsidered test goals.

Implementation We realized Alg. 1 and 2 in the verifier Ultimate Auto-
mizer [25], which already supports automata-based software model checking.
Ultimate Automizer uses an A∗ algorithm [23,24] to detect error traces. We do
not provide A∗ with a specific heuristic, but Ultimate TestGen-incr guides it
with the error locations to consider (i.e., FPtest \ goals). Also, Ultimate Auto-
mizer already provides the automata operations, the construction of interpolant
and error automata, and the feasibility check for error traces.

To encode the test goals, we extend Ultimate Automizer’s translation front-
end, which translates C programs into Boogie programs and then builds the pro-
gram automaton. While our approach allows arbitrary test goals, our implemen-
tation only supports branch coverage, i.e., the test goals are all edges with assume
statements. To encode these test goals, we add an assert false statement with
a unique label at the beginning of each branch in the Boogie program. When the
program automaton is built, every assert statement is translated into two edges.
One edge represents the violation of the assert statement (i.e., !false≡true
is true), ends in an error location and corresponds to (ℓng , trueg, ℓ

e
g). The other

edge passes the assertion and corresponds to (ℓng , trueg, ℓ
′). Since assert false

cannot be passed, we configure Ultimate Automizer to ignore the assert con-
6 For efficiency, our implementation computes one single automata for all error traces

that is equivalent to the union of their error automata.
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dition when passing an assert statement, which is equivalent to condition true.
Furthermore, Ultimate Automizer uses block encoding, which assigns loop free
code blocks instead of statements to edges. To ensure that we do not loose in-
puts due to this encoding, we change Ultimate TestGen’s block encoding and
interrupt a block if an input occurs in the program.

For the feasibility check, Ultimate Automizer first uses unbounded integers,
as known from mathematics, and a combination of the SMT solvers Z3 [36] and
SMTInterpol [18]. If the feasibility check returns true and the encoding is not
precise because the encoded trace considers floats, doubles, bit-wise operations,
etc., we will stop test-case generation with unbounded, mathematical integers
and start test-case generation using a bit-vector encoding, which uses the two
SMT solvers MathSAT5 [19] and CVC4 [3]. To generate a test case for a feasible
error trace, we use the model provided by the feasibility check and proceed as
described above. However, due to the use of e.g., unbounded integers, the values
might be out of range of the variable’s C type. Therefore, we identify the required
C type first and if a value is out of range, we use the value modulo the allowed
size. If there exists a variable whose value is out of range and the size of the
C type depends on the architecture, we write two test cases. One test case
shrinks the values to sizes appropriate for 32-bit architectures and the other for
64-bit architectures.

4 Evaluation

In our evaluation, we aim to investigate the following two research questions.

RQ1 How do the two configurations of Ultimate TestGen compare in terms
of achieved coverage and number of generated test cases?

RQ2 How does Ultimate TestGen compare to similar, up-to-date competitors
in terms of achieved coverage and number of generated test cases?

4.1 Evaluation Setup

Tasks For our evaluation, we consider the coverage criterion branch coverage
and perform the evaluation on the corresponding 2 933 tasks considered in the
International Competition on Software Testing (Test-Comp) in 2023 [6].

Tools We consider the two test-case generation techniques presented in this pa-
per, which are implemented in Ultimate Automizer (TestGeneration branch7

version 94ac8e0). As competitors, we considered the closely related test-case
generators from Test-Comp 2023 [6], i.e., test-case generators that also perform
counterexample-guided abstraction refinement (CEGAR) and predicate abstrac-
tion. From those, we selected the one that achieved the highest score in the cat-
egory cover-branches, namely CoVeriTest [9]. CoVeriTest is based on the

7 https://github.com/ultimate-pa/ultimate/tree/TestGeneration

https://github.com/ultimate-pa/ultimate/tree/TestGeneration
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Fig. 5. Comparing achieved branch coverage (left) and number of generated test cases
(right) of Ultimate TestGen-all (x-axis) and Ultimate TestGen-incr (y-axis)

software analysis framework CPAchecker [10] and uses a portfolio approach
that mainly runs a cyclic combination of predicate abstraction [11] and explicit
model checking [14]. In addition, it mutates the test cases generated by the
cyclic combination and briefly generates random test cases at the beginning. To
compare Ultimate TestGen against an even more closely related approach, we
also consider CoVeriTest’s predicate analysis component (named Predicate)
standalone. For both competitors, we use the CoVeriTest version submitted to
Test-Comp 2023. Furthermore, we measure the coverage of the generated test
suites with TestCov [13] and use the same version as Test-Comp 2023 [6].

Environment We run all experiments on machines with 33GB of memory,
an Intel Xeon E3-1230 v5 CPU with 8 processing units and a frequency of
3.40GHz that run Ubuntu 22.04 (Linux kernel 5.15.0). Following Test-Comp,
we use BenchExec 3.18 [15] to limit each test-case generation run to 8 cores,
15min of CPU time and 15GB of memory and the TestCov runs to 2 cores,
10min of CPU time, and 7GB of memory.

4.2 RQ 1: Comparison of Ultimate TestGen Configurations

We aim to compare the two configurations of Ultimate TestGen based on their
achieved coverage and the number of generated test cases. In general, we aim for
high coverage with a small number of test cases. Figure 5 shows two scatter plots.
Its left scatter plot compares for each test task the branch coverage achieved by
Ultimate TestGen-all (x-axis) with the branch coverage achieved by Ulti-
mate TestGen-incr (y-axis). We observe that a large number of data points is
in the lower right half, i.e., Ultimate TestGen-all achieves a higher coverage. A
detailed analysis reveals that Ultimate TestGen-all achieves a higher coverage
for 1 055 of 2 933 (36%) tasks and the same coverage for 1 778 of 2 933 (61%)
tasks. The reason is that Ultimate TestGen-incr detects longer error traces at
the beginning and if they are infeasible, their interpolant automata are larger,
too. Large interpolant automata may prohibit efficient program abstractions and
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Fig. 6. Comparing achieved branch coverage (left) and number of generated test cases
(right) of Ultimate TestGen-all (x-axis) and Predicate (y-axis)

automata operations are more expensive on larger automata. Thus, Ultimate
TestGen-incr likely detects less feasible error traces in total.

Next, we study the number of generated test cases. The right scatter plot of
Fig. 5 compares for each test task the number of test cases generated by Ulti-
mate TestGen-all (x-axis) with the number of test cases generated by Ulti-
mate TestGen-incr (y-axis). We observe that a large number of data points is in
the lower right half, i.e., Ultimate TestGen-incr generates fewer test cases. A
detailed analysis reveals that Ultimate TestGen-incr generates fewer test cases
for 2 258 of 2 933 (77%) tasks and the same number of test cases for 638 of 2 933
(22%) tasks. More importantly for 41% (1 206 of 2 933) of all test tasks, Ultimate
TestGen-incr covers at least as many branches as Ultimate TestGen-all, but
it generates smaller test suites for 64% (1 206 of 1 878) for them.

In sum, Ultimate TestGen-all achieves better coverage at the cost of more
tests but about half of the time Ultimate TestGen-incr is a valuable alternative.

4.3 RQ 2: Comparison with Competitors

Next, we compare Ultimate TestGen-all, the better of our two approaches,
with the closely related up-to-date competitors Predicate and CoVeriTest.
Again, we consider their achieved coverage and the number of generated tests.
First, let us compare against Predicate, which is the approach most closely
related to ours. The left scatter plot of Fig. 6 compares for each test task the
branch coverage achieved by Ultimate TestGen-all (x-axis) with the branch
coverage achieved by Predicate (y-axis). We observe that many data points are
in the upper left as well as the lower right half, i.e., there exist many tasks for
which Ultimate TestGen-all achieves higher coverage and vice versa. Indeed,
both approaches achieve the same coverage for 44% (1 298 of 2 933) of the tasks.
Predicate achieves a higher coverage for 30% (867 of 2 933) of the tasks, while
Ultimate TestGen-all achieves higher coverage for 26% (768 of 2 933) of the
tasks. To better understand their strengths and weaknesses, let us study Tab. 1.
For each category considered in Test-Comp, Tab. 1 contains a row that shows the
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Table 1. Sum of achieved coverage per task category and test-case generator

Ultimate TestGen

Category # Tasks all incr Predicate CoVeriTest

Arrays 292 20600 18100 19500 20800
BitVectors 61 3750 3350 4760 4820
ControlFlow 11 32.4 27 26.6 46.1
ECA 29 296 267 488 562
Floats 197 8800 8150 8820 9230
Heap 110 7360 4940 6850 7580
Loops 661 52000 47600 49300 52600
ProductLines 263 5120 3010 7050 7670
Recursive 51 4100 3620 3730 4000
Sequentialized 91 2790 45.8 7380 7350
XCSP 114 11100 10700 6380 11400
Combinations 671 17000 14800 22500 23800
BusyBox 62 982 690 607 1030
DriversLinux64 287 5830 5790 5840 5920
SQLite 1 − − − 0.02
Termination 32 2990 2910 2800 3060

Total 2933 142750.4 123999.8 146031.6 159868.12

number of tasks in the category and more importantly for each considered test-
case generator the accumulated coverage, i.e., the sum of the coverage achieved
for each task in that category. The last row shows the sum of the previous rows.
For each row, Tab. 1 highlights the entry with the highest accumulated coverage
in light gray. Studying Tab. 1, we notice that there exist some categories like e.g.,
BitVectors, ECA, ProductLines, Sequentialized, or Combinations, in which
Ultimate TestGen-all achieves a significantly lower accumulated coverage than
Predicate. Looking at the SV-COMP results8, we can recognize that Ulti-
mate Automizer also struggles with the verification tasks of these categories. It
seems these categories are particular difficult for Ultimate Automizer. However,
there also exist categories like e.g., Arrays, Heap, Loops, Recursive, XCSP, and
BusyBox for which Ultimate TestGen-all performs significantly better than
Predicate. This is one reason why CPAchecker and CoVeriTest usually use
a combination of analyses.

Next, let us compare their numbers of generated test cases. The right scatter
plot of Fig. 6 compares this. Again, we observe that many data points are in
the upper left as well as the lower right half, i.e., there exist many tasks for
which Ultimate TestGen-all generates fewer test cases and vice versa. Still,
Predicate generates fewer test cases more often, namely for 68% (2 004 of 2 933
of the tasks). In addition, in 58% (1 263 of 2 165) of the tasks for which Predicate
achieves the same or more coverage, Predicate also generates smaller test suites.
Nevertheless, Ultimate TestGen-all is complementary to Predicate.

8 https://sv-comp.sosy-lab.org/2023/results/results-verified/

https://sv-comp.sosy-lab.org/2023/results/results-verified/
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Fig. 7. Comparing achieved branch cover-
age of Ultimate TestGen-all (x-axis) against
achieved branch coverage of CoVeriTest

Finally, let us compare Ultimate
TestGen-all against CoVeriTest.
The scatter plot of Fig. 7 compares
their achieved branch coverage. Once
more, we observe that there exist data
points in the upper left as well as
the lower right half, i.e., there exist
tasks for which Ultimate TestGen-
all achieves higher coverage and vice
versa. While CoVeriTest achieves
the same coverage in 59% of the cases
(1 725 of 2 933 tasks) and even better
coverage in 36% of the cases (1 044 of
2 933) of the tasks, Ultimate Test-
Gen-all sometimes achieves better
coverage, too. Again, looking at Tab. 1, we notice that there exist some categories
like e.g., BitVectors, ECA, ProductLines, Sequentialized, or Combinations,
in which Ultimate TestGen-all achieves a significantly lower accumulated cov-
erage as CoVeriTest. These are mainly the same categories for which Pred-
icate already outperforms Ultimate TestGen-all. In many other categories,
Ultimate TestGen-all achieves a similar accumulated coverage and in cate-
gory Recursive it even achieves a higher accumulated coverage. When studying
the number of generated test cases, our raw data reveals that CoVeriTest gener-
ates more test cases for 76% (2 232 of 2 933) of the tasks because it mutates every
test case generated by its model checkers several times. To sum up, Ultimate
TestGen complements related state-of-the-art approaches.

4.4 Threats to Validity

Our results may not generalize for several reasons. First, we use benchmark
programs in our evaluation. Although the benchmark is well-established and
contains diverse programs, it may not reflect the characteristics of (all) real-world
applications. Second, we used fixed resource limits for the execution of the tasks.
Different resource limits may change the results. Third, we compared against two
closely related competitors. We expect different results when comparing Ulti-
mate TestGen to more diverse test-case generators.

Also, the coverage results might be imprecise. On the one hand, TestCov
may contain bugs that result in wrong coverage numbers. However, TestCov
will make the same mistakes for all approaches. In addition, TestCov is an es-
tablished validator of Test-Comp. Therefore, we expect that significant bugs
would have been detected already. On the other hand, TestCov sometimes
runs out of resources and may not execute all tests. This happens rarely for
Ultimate TestGen and sometimes for Predicate and CoVeriTest. We believe
the comparison of the two Ultimate TestGen approaches is hardly affected
by this. Moreover, Predicate and CoVeriTest still regularly outperform Ulti-
mate TestGen. Hence, these observations are not affected by the exhaustion of
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resource limits. Also, the comparison of the number of generated test cases is
not affected by any imprecision of the coverage results.

5 Related Work

Symbolic execution is a well-known test-case generation technique [16,17,30,38]
based on verification. Moreover, several approaches have been proposed that
generate test cases from counterexamples produced by software model checkers.
Some of the early approaches are PathFinder [41] and Blast [7]. PathFinder ap-
plies explicit-state model checking or symbolic execution. In contrast, Blast uses
predicate abstraction to generate test cases. Also, CPA/Tiger [8,39], abstraction-
driven concolic testing [21], and CoVeriTest [9] use predicate abstraction. Other
test-case generation techniques like FShell [28], CBMC [31], FuSeBMC [1], and
VeriFuzz [35] employ bounded model checking. Furthermore, the conditional
tester testercycveri (Fig. 14 in [12]) describes a template construction to turn an
arbitrary verifier into a test-case generator, but we are the first that generate
test-cases using an automata-based approach to software model checking [26,27].

Next to their difference in the applied software model checking technique, the
approaches also differ in their encoding of the test goals. Test goals in Blast [7]
are pairs of program location and target predicate. Abstraction-concolic test-
ing [21] and CoVeriTest [9] describe test goals with a set of control-flow edges
and monitor the reachability of those edges. FShell [28] and CPA/Tiger [8,39]
express test goals in FQL [29], in particular its representation as test goal au-
tomata. FShell encodes the automata into the program, while CPA/Tiger runs
the automata in parallel to the analysis. FuSeBMC [1,2] represents test goals
by labels in the program. The conditional tester testercycveri [12] adds calls to
function __VERIFIER_error() into the program such that the function is called
whenever a test goal is reached. Similarly, our approach adds additional (assert)
statements to the program and then characterizes test goals by error locations
reachable when executing the statement, i.e., violating the assertion.

Like Ultimate TestGen-all (Alg. 1), FShell [28], abstraction concolic test-
ing [21], CoVeriTest [9], and the conditional tester testercycveri [12] consider all
test goals at once and exclude already covered goals from being found again. To
this end, CoVeriTest and conditional tester testercycveri remove covered goals
from their specification, while FShell adds SAT constraints on the paths to be
detected. In contrast, Ultimate TestGen uses error automata. Similarly, sym-
bolic execution tools like e.g., KLEE [16], which aim to cover every program
path, may use coverage-optimized search strategies that prefer states that likely
lead to the coverage of new code. At the other extreme, Blast [7] and the BMC
component of FuSeBMC [2] aim to cover one test goal at a time. Thereby,
Blast considers deeper goals first and FuSeBMC prefers deeper goals but may
additionally consider the type of the goal, e.g., whether it is a branch of an if
statement or a loop. CPA/Tiger [39] considers a compromise between the two
extrema and partitions the set of test goals into subsets either randomly or aim-
ing to cluster test goals with similar prefixes. Goals of one subset are considered
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at once and covered goals are removed. If CPA/Tiger cyclically runs multiple
analyses [40], the uncovered test goals are repartitioned before each analysis
run. Ultimate TestGen-incr (Alg. 2) incrementally increases the considered
test goals, thereby prioritizing deeper test goals.

6 Conclusion

Testing is a well-established process for quality assurance, which can be sup-
ported by automatic test-case generation approaches. We propose Ultimate
TestGen, the first test-case generator based on the automata-based approach
to software model checking used by Ultimate Automizer. Ultimate TestGen
first extends the program automaton, the program representation, to encode
the reachability of test goals as property violations. Then, it runs the automata-
based verification and transforms feasible counterexamples into test cases. While
verification typically stops after detecting a feasible counterexample, Ultimate
TestGen aims to cover more than one test goal and, thus, continues verifica-
tion to detect further counterexamples. To avoid detecting a counterexample
triggered by an already covered test goal, Ultimate TestGen extends the veri-
fication approach with error automata that allow us to exclude counterexamples
triggered by an already covered test goal. Moreover, Ultimate TestGen can be
configured to either consider all test goals at once or to incrementally add test
goals in the decreasing order of their distance to the initial program location. Our
experiments reveal that configuration Ultimate TestGen-all regularly achieves
higher coverage while configuration Ultimate TestGen-incr generates smaller
test suites. Also, we show that in 70% of the evaluated tasks Ultimate TestGen-
all achieves equal or higher coverage than the most similar competitor Predi-
cate. However, it is rarely better than competitor CoVeriTest, which combines
different approaches.

Data-Availability Statement All experimental data, all used software as well
as the test tasks are publicly available in our supplementary aritfact [4].
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