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Abstract. The compositional approach is important for reasoning about
large and complex systems. In this work, we address synchronous sys-
tems with hierarchical structures, which are often used to model cyber-
physical systems. We revisit the theory of reactive modules and refor-
mulate it based on hypergraphs to clarify the parallel composition and
the hierarchical description of modules. Then, we propose an automatic
verification method for hierarchical systems. Given a system description
annotated with assume-guarantee contracts, the proposed method di-
vides the system into modules and verifies them separately to show that
the top-level system satisfies its contract. Our method allows an input to
be a circular system in which submodules mutually depend on each other.
Experimental result shows our method can be effectively implemented
using an SMT-based model checker.

1 Introduction

Synchronous reactive systems are a basic model used in the design of cyber-
physical systems (CPSs) [3], which are typically described as a feedback loop
model with plant and digital controller modules. Although it is important for
industrial CPS products to formally verify the safety of their models, the effort
has not been sufficient. The scale and complexity of the models are hampered by
the expertise and computational complexity required by formal method tools.

A divide-and-conquer approach could be the cure for scalability. The theory
of reactive modules [6, 3] provides a foundation of the compositional reason-
ing [16]. It formalizes a system as a set of modules (or agents or components)
that behave synchronously on a sequence of rounds and enables to verify the
implementation (or refinement) relation between composite modules. In the ver-
ification, the assume-guarantee rule [6] is crucial to reason about circular systems
in which submodules depend on each other. Although it has been studied for
decades, the theory is still underutilized in practice due to its discrepancy from
the actual CPS descriptions and the lack of automated verification methods.

In this paper, we consider the verification of synchronous system models
that are composed of reactive modules M1, . . . ,Mn. Assuming that each module
Mj is given a contract (Ma.j ,Mg.j), consisting of assume (a) and guarantee (g)
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{A
1
} {G

1
}M

1
{A

2
} {G

2
}M

2

{φ(i
1
)} {ψ(o

1
,o

2
)}

M†

{A
2
} {G

2
}{A

1
} {G

1
}

Fig. 2. Compositional verification.

properties, and satisfies it (we denote the fact by Mj ||Ma.j � Mg.j), we verify
that the top-level system M1|| · · · ||Mn satisfies its contract (Ma,Mg). As is the
case in [2, 8, 14], verification based on the assume-guarantee contracts requires
an interactive proof process. An automatic method [12, 11] has been proposed
that abstracts submodules using their contracts and efficiently performs model
checking. However, because of the abstraction, the method has the disadvan-
tage of finding spurious counterexamples, especially when dealing with circular
systems.

The objective of this research is to bridge the gap between the theory of
reactive modules and the hierarchical design of practical systems, and to pro-
pose an automated compositional verification method based on the theory. Our
contributions are summarized as follows:

1. We formalize the hierarchical structure commonly used in practical modeling
languages, e.g. Lustre and Simulink, as a composition of reactive modules.
Our formulation features the use of hypergraphs to describe hierarchical
structures. We extend the definition of modules for hierarchization and show
how it differs from parallel composition.

2. We propose a compositional verification method that transforms a hierarchi-
cal module M [M1, . . . ,Mn] into a form of a composition M1|| · · · ||Mn||M†

and then checks that it satisfies a given contract (Ma,Mg). We show how to
validate the implementation relation M [M1, . . . ,Mn]||Ma � Mg automati-
cally. The effectiveness of the method is confirmed by applying our imple-
mentation to several examples.

Example. Hierarchical modules can be illustrated as a flow diagram in Fig. 1 in
which rectangles represent modules e.g. M1; outer rectangle represents a hier-
archical module M [M1,M2]. Each module is equipped with input, output, and
hidden state variables, and is interpreted as a reaction relation between their val-
ues. We consider to verify that the module satisfies a contract (φ(i1), ψ(o1, o2)),
assuming the submodules are given sub-contracts (A1, G1) and (A2, G2). A com-
positional verification can be done in three ways:

– The method based on the reactive module theory regards M [M1,M2] as a
parallel composition M1||M2|| · · · (if other modules are used, they should
be composed together). Then, we deduce that the system satisfies the top-
level contract by applying the inference rules to the assumptions, along with



the composition structure. As the number of modules increases, the proof
becomes more complex.

– The method based on abstraction [11] regards each submodule Mj as a
reaction relation, e.g. HAj ⇒ Gj described with a past fragment of LTL,
and verifies M [M1,M2] as a whole. Since there is a circular wiring in Fig. 1,
this method may result in a spurious counterexample.

– The proposed method decomposesM [M1,M2] asM1||M2||M† (Fig. 2) where
the module M† represents the top-level description content equipped with
interface variables with M1 and M2. We formalize M† using hypergraphs
and propose how to properly give sub-contracts to it. Then, we show that
if the verification for the submodules M1, M2 and M† succeeds, then the
verification goal for M [M1,M2] is also valid.

Paper organization. Sect. 2 introduces the basics of the theory of reactive mod-
ules, which is reformulated using hypergraphs. Sect. 3 describes a formalization
of hierarchical modules. Sect. 4 presents a proposed method that transforms
hierarchical modules into decomposed forms. Sect. 5 describes a prototype im-
plementation of the method and Sect. 6 reports an experimental result. Sect. 7
describes the related work.

Preliminaries. We assume a basic knowledge of directed hypergraphs (V,E) where
V and E are sets of vertices and (hyper)edges (or hyperarcs), respectively. Each
hyperedge consists of two lists of vertices called the source (or head) and the
target (or tail), respectively. Given e ∈ E, we denote by src(e) and tgt(e) the
sets of the vertices in the source and target. We call a vertex v initial if ∀e ∈
E, v /∈ tgt(e) and terminal if ∀e ∈ E, v /∈ src(e). For details of the hypergraph
theory, see e.g. [9, 19].

2 Reactive Modules

This section is a run-through introduction to the basics of the reactive module
theory [6, 3], which is modified for our purpose.

We consider variables typed as unit, bool, int, etc., referring to the domains
D(unit) = {()}, D(bool) = {>,⊥}, D(int) = Z, etc. Given a variable v of
type t, we denote its evaluation by [[v]] ∈ D(t). Given a set of variables V =
{v1, . . . , vn} and a family of types {tv}v∈V , we denote by D(V ) the domain,∏

v∈V
D(tv) if V 6= ∅, {()} if V = ∅,

i.e. a Cartesian product of the family {D(tv)}v∈V . For variable sets V ( 6= ∅) and
W ⊆ V , and a subdomain D = Πv∈VDv ⊆ D(V ), πW (D) denotes the projection
onto W i.e. Πv∈WDv.

2.1 Task hypergraphs

As a unit to describe a composite system, we consider stateless tasks that are
non-blocking and can be nondeterministic.



Definition 1. Let R and W be finite and mutually disjoint sets of variables. A
task e with a read set R and a write set W is represented by a total relation
in D(R)×D(W ) such that ∀r∈D(R), ∃w∈D(W ), (r, w) ∈ e. We also denote a
task by e(R,W ) to clarify its read and write sets.

For example, a task e(∅,W ) represents a task that outputs a constant or a
nondeterministically chosen value in D(W ). Given e : D(R) → D(W ), it can
represent a task that applies the function to the value of R and writes it to W .

In this paper, we propose to formalize a composite task description as a hy-
pergraph representing a network of tasks connected via read and write variables.
It aims to be an extension of task graphs in [3] to depict relations between both
tasks and variables.

Definition 2. A task (hyper)graph (TG) (V,E) is a directed hypergraph whose
vertices represent variables and hyperedges represent tasks. We assume that
(i) (V,E) is acyclic, (ii) no vertex is isolated, (iii) each vertex has at most one
incoming edge, (iv) for a task e ∈ E such that e ∈ D(R)×D(W ) and a variable
v ∈ V , v ∈ src(e) iff v ∈ R and v ∈ tgt(e) iff v ∈W .

If it is clear from the context, we do not distinguish between vertices and vari-
ables, or hyperedges and tasks (relations in the variable domains), respectively.
Precedence relation between tasks (denoted by e ≺ e′ in [3]) and await depen-
dency between variables (v � v′ in [6, 3]) are represented by the existence of a
path between the two in the graph. The condition (iii) prevents conflicts between
writes to a variable by multiple tasks.

Example 3. Fig. 4 illustrates an example TG. Each dot (with or without circle)
represents a vertex in {i1, i2, o1, o2, s1, s′1, l1} and each set of directed lines me-
diated by a numbered circle represents a hyperedge in {e1, e2, e3}. For instance,
src(e2) = {i2, s1} and tgt(e2) = {l1}. The hypergraph in Fig. 9b is not a TG
since it contains a cycle.

TGs can be regarded as total relations i.e. tasks.

Definition 4. Let (V,E) be a TG, R the set of initial vertices, and W the set
of vertices such that W ⊆ V \R. We consider a relation

∃v1∈D(t1), · · · ∃vm∈D(tm), e1(R1,W1) ∧ · · · ∧ en(Rn,Wn), (1)

where {v1, . . . , vm} = V \ (R∪W ), t1, . . . , tm are their types, and {e1, . . . , en} =
E. We denote the set of all such relations represented with a TG by T (R,W ).

Note that variables in R may always be the initial in the TG, but those in W
are not necessarily the terminal (they are shown as circled dots in the figures).
Every variable in Rj or Wj (j = 1, . . . , n) not included in R ∪W are bound by
a quantifier in Eq. (1).

Lemma 5. Every relation in T (R,W ) is total.



Proof. The vertices in a TG can be partially ordered by the lengths of the
longest paths from any initial vertex; we group the vertices according to the
ordering. The initial vertices in R belong to the first group. The vertices written
by tasks with the empty read set belong to the second group. Then, we check
∀ur ∈D(R), ∃uw ∈D(W ),R(ur, uw) holds where R represents the relation (1).
We check by induction that a value exists for vertices in every group to satisfy the
relation. The first group is universally quantified, so any values can be assigned
to the vertices. Assuming that the previous groups has been assigned values, the
values for the next group are determined by the incoming tasks. ut

Although tasks in [3] are stateful, we formulate them as stateless. Modules
defined later specify the state variables among the read/write set of tasks and
properly manage the states. Atoms are used instead of tasks in [6] to represent
the initialization of the state of a module when executed and the reactions in
each round. We embed the initial conditions in modules and represent only the
reactions with TGs.

2.2 Modules, implementation relation, and parallel composition

Reactive and synchronous systems are formalized as compositional modules
(called components in [3]) executed in a series of rounds.

Definition 6 ([6, 3]). A module is a tuple (I,O, S, I,R) where I, O and S
are mutually disjoint sets of input, output and state variables. I ⊆ D(S) is an
initial condition, and R is a reaction relation that is a TG in T (S ∪ I,O ∪ S′),
where S′ represents a set of variables renamed from S. An execution of a module
is a sequence of reactions

s(−1)
i(0)/o(0)−−−−−→ s(0)

i(1)/o(1)−−−−−→ s(1) · · · =

{(s(j−1), i(j), o(j), s(j)) ∈ R | j∈{0} ∪ N, s(−1)∈I}.

A trace of an execution is a sequence of values (i(0), o(0)) (i(1), o(1)) · · · , i.e. the
projection onto I ∪O.

Note that R is interpreted as a set of quadruples of values, each of which is a
family of values indexed by S, I, O or S′. We assume the state variables in S
and S′ always be the initial and terminal vertices of R, respectively. Differently
from the formalization in [3], which embeds state variables within tasks, modules
must designate the vertices representing state variables from among the TG’s
initial and terminal vertices. Hereafter, for a module Mi with an identifier i, we
denote its elements by e.g. Ii and Ri.

If I, O or S of a module is empty, there may be an execution that involves the
value (). For example, the module M⊤ defined by (∅, ∅, ∅, {()}, {((), (), (), ())})
has an execution represented by a sequence of ((), (), (), ()).

As a graphical language to describe modules (e.g. Simulink), we consider
signal flow diagrams (SFDs). An SFD consists of rectangles and directed lines
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Fig. 7. The TG of MEx.7||Mdelay.

annotated with variable names and other labels. The rectangles represent mod-
ules that can be stateful and the lines represent synchronous communication
between the processes. Input signals are connected to the left side and output
signals are extracted from the right side of rectangles.

Example 7. The SFD of a counter constructed with an addition module and a
delay module is shown in Fig. 3, which consists of IEx.7 = {i1, i2}, OEx.7 =
{o1, o2}, SEx.7 = {s1}, IEx.7(s1) ≡ ([[s1]] = 0), and REx.7 represents a function
([[i1]], [[i2]], [[s1]]) 7→ ([[i1]], [[i2]]+ [[s1]], [[i2]]+ [[s1]]). Fig. 4 shows REx.7 as a TG. The
vertices in OEx.7 are shown as circled dots and the vertex l1 represents a local
variable that does not belong to IEx.7, OEx.7 or SEx.7. The hyperedges e1, e2 and
e3 represent the identity, addition and copy functions. An execution can be

0
(⊤,1)/(⊤,1)−−−−−−−→ 1

(⊥,0)/(⊥,1)−−−−−−−→ 1
(⊤,2)/(⊤,3)−−−−−−−→ 3 · · · .

Example 8. There can be multiple TGs representing a reaction relation. Fig. 5
shows another TG for REx.7 in which e4 outputs two copies of the sum.

We also represent a safety property of a coexisting module as a module. A
safety property φ(v) involving a list of variables v = (v1, . . . , vn) is a module
Mφ(v) with Oφ(v) = {v1, . . . , vn}, which nondeterministically outputs a signal
satisfying φ(v).

Example 9. We can consider an invariance property G o2 ≥ 0 of MEx.7 where G
is the “always/globally” operator of LTL. Output signals represented by variable
o2 of the module MEx.7 must be mimicked by MG o2≥0.



Next, we introduce the implementation (or refinement) relation and the com-
position mechanism for the modules.

Definition 10 ([6]). Let M1 and M2 be modules. We say M1 implements M2,
denoted byM1 �M2, if (i) O2 ⊆ O1, (ii) I2 ⊆ I1∪O1, (iii) the await dependency
of y ∈ O2 on x ∈ I2 ∪ O2 in R2 (i.e. y � x) is preserved in R1, and (iv) for
every trace t of M1, the projection of t onto I2 ∪O2 is a trace of M2. We denote
M1 �M2 ∧M2 �M1 by M1

∼=M2.

Lemma 11 ([6]). The implementation relation is a preorder.

Definition 12 ([6, 3]). We say modules M1 and M2 are compatible if (i) O1∩
O2 = S1∩S2 = ∅ and (ii) R1∪R2 (the union as graphs) is acyclic. The parallel
composition (PC) M1||M2 is a module (I,O, S, I,R), where I = (I1 ∪ I2) \ O,
O = O1 ∪O2, S = S1 ∪ S2, I = I1×I2 and R = R1 ∪R2.

Example 13. Consider composing the module in Ex. 7 with a module Mdelay

that represents a delay task whose TG is Fig. 6. The TG of PC MEx.7||Mdelay

is shown in Fig. 7.

Lemma 14 ([6]). The PC operation is associative, transitive and symmetric.

To deal with extra output variables added by the PC operation, we introduce
the hiding operator.

Definition 15 ([6, 3]). Given a module M and a subset of output variables
O′ ⊆ O, hiding of O′ in M , denoted M \O′, is a module consisting of the same
elements as M but excluding O′ from O.

2.3 Compositional verification

We consider to verify that a module M fulfils an assume-guarantee contract
(Ma,Mg), i.e. a pair of modules. For that purpose, we can show M ||Ma � Mg

holds. In our experiment in Sect. 6, we consider contracts consisting of safety
properties.

Example 16. MEx.7||MGi2≥0 �MGo2≥0 holds.

In this paper, we consider the verification of systems composed of n submod-
ules. Here, we assume that each submodule satisfies a given contract, and aim at
efficiently verifying the fact that the entire system fulfils the top-level contract
by utilizing the assumptions.

Definition 17. A compositional verification problem consists of n modules M1,
. . . , Mn, a top-level contract (Ma,Mg) and n sub-contracts (Ma.j ,Mg.j) where
j = 1, . . . , n; we assume Mj ||Ma.j � Mg.j for every j. The goal is a condition
M1|| · · · ||Mn||Ma �Mg.
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Fig. 9. Separation of a hypergraph.

The module M⊤ can be used to omit some elements of contracts. For arbitrary
M , M �M⊤ and M ||M⊤ ∼=M hold.

The following lemma provides two basic inference rules for the compositional
reasoning on modules. The second rule allows a PC M1||M2 to be circular i.e.
I1 ∩O2 and I2 ∩O1 are nonempty.

Lemma 18 ([6]). Let M1, M2, M3 and M4 be modules, where M1 and M2,
and M3 and M4 are respectively compatible, and I3 ∪ I4 ⊆ I1 ∪ I2 ∪ O1 ∪ O2.
(i) M1||M2 � M1. (ii) If M1||M3 � M4 and M2||M4 � M3, then M1||M2 �
M3||M4.

Example 19. We consider a compositional verification problem of the system
MEx.7||Mdelay in Ex. 13, which consists of

– submodules MEx.7 and Mdelay,
– top-level contract (M⊤,MGo2≥0), and
– sub-contracts (MGi2≥0,MGo2≥0) and (MGo2≥0,MGi2≥0).

The goal MEx.7||Mdelay||M⊤ � MGo2≥0 is provable. First, we can deduce as
follows.

MEx.7||MGi2≥0 ⪯ MGo2≥0

Mdelay||MGo2≥0 ⪯ MGi2≥0
Lem.18(ii)

MEx.7||Mdelay ⪯ MGi2≥0||MGo2≥0
Lem.18(i)

MGi2≥0||MGo2≥0 ⪯ MGo2≥0
Trans.

MEx.7||Mdelay ⪯ MGo2≥0

Then, the goal follows from MEx.7||Mdelay||M⊤ �MEx.7||Mdelay.

3 Hierarchical Reactive Modules

Practical languages for describing modules (e.g. Lustre and Simulink) tend to
support hierarchical structures. We formalize such structures by allowing a TG
to be hierarchical, separating a subhypergraph of the TG as a submodule.

Definition 20. For a TG (V,E), its sub(hyper)graph is a TG such that V ′ ⊆ V
and E′ ⊆ E. Assume a subgraph (V ′, E′) of (V,E) is in T (R,W ). Then, the
abstraction of (V ′, E′) in (V,E) is a hypergraph (V ′′, E′′) where V ′′ is a set such
that V ′ ∪ V ′′ = V and E′′ = (E \ E′) ∪ {e} where e is a fresh hyperedge such
that src(e) = R and tgt(e) =W .



According to [9], subgraphs defined above are partial subhypergraphs without
isolated vertex. Note that an abstraction of a TG may contain a cycle as shown
in the following example.

Example 21. Consider a hypergraph in Fig. 8 that describes yet another TG
(lower part) for Ex. 7. The graph in Fig. 9a is its subgraph that consists of the
separated edges e4 and e5. The abstraction of the subgraph in Fig. 8 is shown
in Fig. 9b, in which e6 is associated with the subgraph.

Now, we consider the TGs of modules to be hierarchical. Intuitively, a hier-
archical module is a module that separates subgraphs as submodules. To ensure
the consistency among decomposed descriptions, and because of the proposed
method, we assume several conditions.

Definition 22. Let M1, . . . ,Mn be modules. A hierarchical module M [M1, . . . ,
Mn] (also denoted by M or M [M1..Mn]) is a module that satisfies the following
conditions for each submodule Mj: (i) I ∩ Ij = O ∩ Oj = ∅, (ii) Sj ⊆ S,
(iii) πSj (I) ≡ Ij, and (iv) Rj is a subgraph of R.

The condition (i) forces a submodule to handle its own input and output vari-
ables to facilitate the separation of the submodules in Sect. 4. The input and
output variables must be copied to local variables before communicating with
submodules. The conditions (ii) and (iii) make the state variables of a submod-
ule shared with the parent and are maintained properly. A hierarchical module
is interpreted as a flattened module whose TG embeds the submodules’ TGs.
In order for a hierarchical module M [M1..Mn] and its submodules M1, . . . , Mn

to be interpreted as modules properly, the TGs of the submodules must avoid a
write conflict (Def. 2) and their states must be managed with separate variables,
i.e.,

∩
j=1,...,nOj =

∩
j=1,...,n Sj = ∅ must hold.

Example 23. We consider a hierarchical module MEx.23[M1,M2] that has two
counter modules as submodules (Fig. 10). We assume they are the same as in
Ex. 7, except for the variable names. Its TG is shown in Fig. 11 where the
dashed frames enclose the hyperedges in the subgraphs. The state variables of
the submodules are inherited to MEx.23 (SEx.23 = {s1, s1.1, s2.1}) and IEx.23 is
set as {>}×I1×I2. MEx.23||MGi1≥0 �MGo1≥0 holds.

Abstraction of hierarchical modules. The hierarchization of modules can
be viewed as an abstraction as shown in Ex. 21 (Fig. 9b). Naively, we can replace
a fragment of the TG that belongs to a submodule with a hyperedge, which is
then regarded as a complete graph between input and output vertices. Then,
it may help to efficiently search for a counterexample that can be executed by
the parent module. The Kind2 model checker [11] abstracts each submodule
Mj with a hyperedge representing a property Hφ(ij) ⇒ ψ(oj), where H is the
pLTL “historically” modality, to exploit the contract given as a pair of safety
properties (φ(ij), ψ(oj)) (where ij/oj is a variable list in Ij/Oj). Separately, the
fact Mj ||Mφ(ij) � Mψ(oj) has to be verified to check that the submodule Mj

satisfies the contract.
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Example 24. Let φ(x) ≡ Gx ≥ 0. For the submodules Mj of MEx.23 (j =
1, 2), Mj ||Mφ(ij.2) � Mφ(oj.2) holds. Then, the fact MEx.23||Mφ(i1) � Mφ(o1)

can be verified with an abstraction that replaces each submodule Mj with
MHφ(ij.2)⇒φ(oj.2).

While the abstraction methods enable a verification process that leverages
the sub-contracts, they cannot properly handle circular systems whose submod-
ules assume the existence of other submodules. In such cases, the abstraction
approach might not work; the process may detect spurious counterexamples.

Example 25. Consider the verification of φ(x) ≡ Gx ≥ 0 on MEx.23 again. Let
ψ(x1, x2) ≡ G(x1∧x2 ≥ 0). For the submodulesMj (j = 1, 2),Mj ||Mψ(ij.1,ij.2) �
Mψ(oj.1,oj.2) holds. So, we can abstract the subgraph forMj with Hψ(ij.1, ij.2) ⇒
ψ(oj.1, oj.2) in the TG of MEx.23. Then, the verification of MEx.23||Mφ(i1) �
Mφ(o1) will result in a false counterexample such that [[i1.1]] = [[i2.1]] = ⊥.

4 Compositional Verification of Hierarchical Modules

In this section, we propose a compositional verification method that can handle
circular hierarchical modules. The method validates that a module M [M1..Mn]
satisfies a contract (Ma,Mg). We describe how to validate the goal under the
assumption that every submodule Mj (j ∈ {1, . . . , n}) satisfies its contract
(Ma.j ,Mg.j). The key idea is to prepare a module M† called adapter by extract-
ing only the top-level part of the hierarchical TG. The subgraphs are separated
from the top-level TG and the variables that correspond to the boundary vertices
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Ex.23.

between the top-level part and the subgraphs are set as input and output vari-
ables of the adapter module. The adapter M† is prepared in a way M [M1..Mn]
andM1|| · · · ||Mn||M† be isomorphic, and thus yields a compositional verification
problem (Def. 17).

Definition 26. For sets V1, . . . , Vn, we denote their union by V{1..n}. The adapter

M† of a hierarchical module M [M1..Mn] is a module with the components I† =
I ∪ O{1..n}, O

† = O ∪ I{1..n}, S† = S \ S{1..n}, I† = πS†(I), and R† obtained
from R by removing the hyperedges ej and the vertices corresponding with the
variables in Sj for every j.

Example 27. The TG ofM†
Ex.23 is with R = {i1, o1.1, o1.2, o2.1, o2.2, s1} andW =

{o1, i1.1, i1.2, i2.1, i2.2, s′1}. It is illustrated as Fig. 12.

A hierarchical module can now be regarded as a PC of decomposed modules
(up to ∼= in Def. 10). However, since extra output variables of the submodules
are added by the PC, they must be hidden (Def. 15).

Lemma 28. Let M [M1..Mn] be a hierarchical module and M ′ be M1|| · · · ||Mn||
M†. Then, M [M1..Mn] ∼=M ′ \ (I{1..n} ∪O{1..n}).

Proof. In Def. 26, the variable sets I{1..n} and O{1..n} are added to the adapter

as initial and terminal vertices in R†. Then, the PC of Mj and M† merges Rj

and R† by matching the vertices for the variables in Ij∪Oj . Hence, the resulting
TG is equivalent of replacing ej with Rj in Def. 22 (ii). Each set of the variables
is equal to that of M [M1..Mn] by the hiding operation. ut

Once a hierarchical module is decomposed into a PC of submodules and
an adapter, it is possible to perform a compositional verification of facts about
the module based on the theory of reactive modules. To do so, we can make a
proof using the inference rules in Sect. 2, which may require a manual effort.
However, the following theorem shows that such verification always succeeds if
the conditions on the submodules and the adapter are valid.

Theorem 29. Consider a goalM [M1..Mn] ||Ma �Mg. If (a)Mj ||Ma.j �Mg.j

for every j and (b) M†||Ma||Mg.1|| · · · ||Mg.n � Mg||Ma.1|| · · · ||Ma.n, then the
goal holds.

Proof. Let M[j..k] represent Mj || · · · ||Mk if j ≤ k and the empty module M⊤
if j > k (we use the same notation for Ma.[j..k] and Mg.[j..k]). We rewrite the
condition (b) as follows (we assume j = n initially):

M[(j+1)..n]||M†||Ma||Mg.[1..j] �Mg||Ma.[1..j]. (2)



From (a), (Mj ||Ma.j)||(Ma.[1..(j−1)]||Mg) �Mj ||Ma.j (Lem. 18 (i)), and the tran-
sitivity of �, we have

Mj ||Mg||Ma.[1..j] �Mg.j . (3)

From (2), (3) and Lem. 18 (ii), we have

M[j..n]||M†||Ma||Mg.[1..(j−1)] �Mg||Ma.[1..j]||Mg.j .

The rhs can be simplified to Mg||Ma.[1..(j−1)] (by Lem. 18 (i) and the transitiv-
ity). By repeating the above for j = n− 1, . . . , 1, we will obtain the fact, which
is equivalent to the goal due to Lem. 28. ut

The proposed method can be regarded as transferring the proof process along
with top-level’s compositional structure to the verification process of the condi-
tion (b) of Th. 29. If the top-level can be viewed as a nested PC structure of
submodules, then a proof of a hierarchical module may be obtained by apply-
ing the inference rules in Lem. 18 to the PCs. However, the proof process for a
verification goal is non-trivial in general. Applying the inference rules requires a
number of deductions, introduction of PCs of submodules and property modules,
and adjusting the form of PC terms while checking module compatibility.

The proposed method provides an automated process for the compositional
verification problem. As implemented in the next section, the separation of
adapters can be automated, and the entire process can also be automated when
combined with an automatic verifier for submodules.

When a system contains multiple hierarchies, we can simply repeat the pro-
cess to check the two conditions in Th. 29 in a bottom-up fashion to verify the
whole system. Each process for a hierarchical module decomposes it after deriv-
ing an adapter, then either verifies the contract for the PC of the submodules
or composes them with other submodules of the parent.

5 Implementation

We have implemented the proposed method by extending the Kind2 tool.

5.1 Lustre, CoCoSpec, and Kind2

Kind2 (version 1.6.0)[11] is an SMT-based model checking tool (we used Z3 4.12.4
as an SMT solver). Its input language is Lustre [10], a textual language for de-
scribing hierarchical synchronous modules, and the modules can be annotated
contracts with the CoCoSpec language [12].

Example 30. Fig. 13 shows an example described with Lustre and CoCoSpec. It
is a module similar to Ex. 23 in which the counters are replaced with second-
order digital filters. A Lustre node is defined by a section started with node,
which is followed by

– the node name (e.g. Filter and Toplevel),



1 node Filter (in1 : bool; in2 : real)

2 returns (out1 : bool; out2 : real);

3 (*@contract

4 assume in1; assume -1.0 <= in2 and in2 <= 1.0;

5 guarantee out1; guarantee -1.0 <= out2 and out2 <= 1.0;

6 *)

7 var sum, D1, D2: real;

8 let

9 out1 = in1;

10 sum = 0.0582*(if in1 then in2 else -in2) - (-1.49*D1) - 0.881*D2;

11 D1 = 0.0 -> pre sum; D2 = 0.0 -> pre D1;

12 out2 = (sum - D2) / 1.25;

13 tel

14

15 node Toplevel (in : real) returns (out : real);

16 (*@contract

17 assume -1.0 <= in and in <= 1.0;

18 guarantee -1.0 <= out and out <= 1.0;

19 *)

20 var b1, b2, pre_b2 : bool; s1 : real;

21 let

22 b1, s1 = Filter(b2, in); pre_b1 = true -> pre b1;

23 b2, out = Filter(pre_b1, s1);

24 --%MAIN;

25 tel

Fig. 13. An example Lustre program annotated with CoCoSpec.

– the input variable list (in parentheses),
– the output variable list (with keyword returns),
– the contract annotation (described within a comment),
– the local variable list (with keyword var), and
– the body (enclosed in let and tel). The line “--%MAIN;” specifies that the

node is a verification target.

We consider modules to be instances of Lustre nodes whose input and output
variables are substituted by the arguments. The above program describes the
verification conditions MF0||MF0.a � MF0.g and MT0[MF1,MF2]||Ma.T0 � Mg.T0

whereMNi represents the ith instance of the node N andMa.Ni andMg.Ni represent
the annotated properties (we abbreviate Filter and Toplevel as F and T).

When an input describes a goal (verification condition for the target module)
M [M1..Mn]||Ma � Mg and conditions for submodules Mj ||Ma.j � Mg.j where
j = 1, . . . , n, Kind2 is able to verify its validity in three modes:

– Monolithic mode that interprets the target M [M1..Mn] as a module (cf.
Def. 22) and verifies only the goal.

– Modular mode that verifies only the conditions for submodules M1, . . . , Mn.



– Compositional mode that verifies the goal with an abstraction as described
in Sect. 3.

We used Kind2 with the default setting, which runs several model checking
algorithms e.g. BMC, k-induction and PDR, in parallel.

5.2 Implementation of the proposed method

We have implemented the proposed method in OCaml by modifying Kind2.1 The
function we have added translates a hierarchical Lustre program to a program
in which the hierarchical modules are replaced with adapter modules (here, we
also refer to Lustre nodes as modules). The input is Lustre programs annotated
with CoCoSpec contracts. It generates a list of reactive modules by applying the
following processes:

1. Instantiation of module definitions. Because a Lustre node may be invoked
several times by the parent module, we instantiate a node definition with
the real argument of each call.

2. Modification of the top-level into an adapter. For each hierarchical module,
we remove the submodule invocation statements and modify the variable list
as described in Def. 26.

3. Pretty printing. The intermediate data will be printed as a decomposed and
properly annotated Lustre program.

By feeding the output Lustre program to Kind2 with the modular mode, the
satisfaction of the assume-guarantee contract by each module will be checked.
The success of the process implies the validity of the annotated top-level module
in the original Lustre program.

6 Experiment

To evaluate the effectiveness and the performance of the proposed method, we
have conducted the verification of several examples using the implementation.
The experiment was done with a MacBook Pro (10-core Apple M2 Pro chip and
32GB RAM).

We prepared several circular hierarchical modules for the experiment.

– Feedback loop system containing n digital filters (nFilters). This is an ex-
tended and parameterized version of Ex. 30. The Toplevel instance has n
Filter instances, and they form a loop as illustrated in Fig. 14a. We gave
the same assume-guarantee contracts to Filter and Toplevel as in Ex. 30
and verified that Toplevel satisfies the contract.

1 The artifact is available at https://doi.org/10.5281/zenodo.10559936 and the
source code is available at https://github.com/dsksh/kind2.
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Fig. 14. SFDs of the example modules.

Table 1. Execution result.

Monolithic Proposed method

Example Time Time #Guarantees

2Filters 204s 14.9s 7
3Filters TO 14.9s 9
36Filters TO 15.4s 75
MCtrl TO 3.1s 24

– DC motor control (MCtrl). This is a more practical and typical example in
which a motor and a controller are described as submodules M2 andM1 and
form a feedback loop as illustrated in Fig. 14b. We annotated the top-level
module with 8 safety (guarantee) properties, and submodules with 3 to 5
assume/guarantee properties.

We first verified the target hierarchical modules with the monolithic mode
of Kind2. Second, we decomposed the target modules into the PC forms using
the proposed method, and then verified that the submodules and the adapters
satisfied their contracts (i.e. the conditions in Th. 18) using Kind2. Note that,
if we verify any of the examples with the compositional mode of Kind2, it will
result in a spurious counterexample as explained in Ex. 25.

Experimental result. The result is shown in Table 1. Each column shows wall
clock time for the monolithic process or the process with the proposed method,
and the total number of guarantee properties verified with the proposed method
(“#Guarantees”). “TO” means the process did not terminate within 600s.

Discussions. Since the submodules i.e. the digital filters, motor and controller
behave in a stateful manner, using Kind2 to check the safety properties re-
quires analyzing the execution prefixes of certain lengths, which would be time-
consuming. Therefore, the verification of the system at once resulted in timeouts
except for 2Filters. When the proposed method verified the examples by divid-
ing them into modules, the process was more efficient because the numbers of
rounds analyzed were reduced.

In each experiment for nFilters, the proposed method verified only a Filter

instance because n verification conditions for submodules were for the same
Lustre node. Therefore, differences in the value of n should appear only in the
verification of adapter module; the number of read/write variables of the mod-
ule and the number of corresponding guarantee properties would increase. The



execution time increased slightly; although this was due to the simplicity of the
top-level content, we consider the overhead of our method was small since in-
creasing the number of variables did not have much effect. The effectiveness of
our method was also confirmed in MCtrl.

7 Related Work

The hierarchy with nesting parallel compositions has been considered in an im-
plementation [2] and extensions e.g. [4] of the reactive module theory. The hierar-
chization we consider in this paper is slightly different from the nesting of com-
position operations; ours corresponds to the embedding operation in dataflow
diagrams. Alur et al. [5] address two kinds of hierarchies by agents and modules,
and propose to perform reasoning on them separately; they do not consider a
transformation between the two unlike this work.

More recently, there has been work on compositional verification of hierar-
chical Simulink models [8, 13, 14, 17]. As in this paper, these methods give con-
tracts to subsystems and verify the models according to a hierarchical structure.
Boström and Wiik [8] propose to convert both models and contracts to specific
dataflow graphs, then to sequential programs, and perform program verification.
Their method does not support models with algebraic loops, and it is not clear
whether it can handle the circular systems we consider. Dragomir et al. [14, 21]
introduce QLTL properties and dedicated refinement calculus to perform ver-
ification on hierarchical models interactively on Isabelle. Notably, they handle
liveness properties which we do not. Their verification method requires human
support unlike ours. Since they do not seem to provide any inference rules that
explicitly deal with circular cases, it is unclear whether our method is applicable
to their framework.

The Kind2 tool [11] supports the modular and compositional model checking
of hierarchical Lustre programs as described in Sect. 3 and Sect. 5. It is limited in
handling circular programs. Murugesan et al. [17] also propose a compositional
model checking method for Simulink based on a similar abstraction method.

Dragomir et al. [13] propose to analyze hierarchical models with compos-
ite predicate transformers (CPTs) that use several composition operators, e.g.
serial and parallel compositions and feedbacks. In comparison, we use only one
composition operator and formalize the hierarchical structure in a fixed way. Tri-
pakis et al. [22] formalize hierarchical dataflow diagrams and propose a profiling
method to assure the modularity; although the subject is similar, their purpose
is different from ours. Bakirtzis et al. [7] propose a general framework for various
compositional CPS models, which includes concepts equivalent to modules and
hierarchies and a formalization of contracts; however, they do not discuss either
a transformation between the two concepts or verification methods. Fong and
Spivak [15] formalize various hierarchical models of reactive systems, but do not
consider synchronous behavior or assume-guarantee verification.



Automation of contract generation has been studied, e.g. [20, 1, 18]. We as-
sume that contracts are given; the combination of our method and contract
generation is a future issue.

8 Conclusion

We have formalized hierarchical synchronous systems based on the theory of re-
active modules. We have then proposed a verification method that decomposes
a hierarchical module into non-hierarchical modules and checks each module
separately to show that the whole system satisfies the contract. As the experi-
mental results show, the proposed method can effectively verify the systems with
circular structures, which are suitable for describing plant control CPSs.

In general, compositional reasoning requires proof of the consistency among
the verification results of each module, but this is not necessary when a top-level
module is decomposed with our method. The proof task to analyze the system
structure is delegated to the implementation relation on the adapter, and then
it is efficiently discharged using a tool like Kind2.

Future work includes integrating the proposed method with other composi-
tional methods such as for triggered modules and different-rate modules. Also,
cooperation with automatic contract generation methods remains an issue.
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