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Abstract. Reactis® is a suite of tools produced by Reactive Systems,
Inc. (RSI), for automated test generation from, and verification of, sys-
tems given in either the modeling languages MATLAB® / Simulink®
/ Stateflow® of The MathWorks, Inc., or ANSI C. RSI was founded by
three of the authors of this paper in 1999, with the first release of Reactis
coming in 2002; the tools are used in the testing and validation of embed-
ded control systems in a variety of industries, including automotive and
aerospace / defense. This paper traces the development of the Reactis
tool suite from earlier research on model-checking tools undertaken by
the authors and others, highlighting the importance of both the foun-
dational basis of Reactis and the essential adaptations and extensions
needed for a commercially successful product.
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1 Introduction

Reactis®4 [43] is a suite of tools for the validation of embedded control systems.
The tool suite provides two key functionalities:

1. automated test generation from The Mathworks Inc.’s MATLAB® / Simu-
link® / Stateflow® (hereafter referred to collectively as “Simulink”) mod-
eling environment5 models and ANSI C code; and

2. verification of user-specified requirements against models / code.

⋆ Supported by Small Business Innovation Research (SBIR) funding from the US
National Science Foundation and Office of Naval Research.

4 Reactis® is a registered trademark of Reactive Systems, Inc.
5 MATLAB ®, Simulink® and Stateflow®are registered trademarks of The Math-
Works, Inc.
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Reactis is developed and sold by Reactive Systems., Inc., a company founded
by three of the authors of this paper (Cleaveland, Smolka and Sims) in 1999;
the fourth author (Hansel) was the first non-founder technical employee of the
company. The tools’ primary user base consists of engineers in the automotive
and aerospace / defense industries, where the use of Simulink and C is ubiquitous
in the design and development of embedded control systems. Customers include
companies in over 20 countries world-wide.

While targeting testing-based-validation use cases, Reactis has its intellectual
foundations squarely in the formal-verification research community, and more
specifically, in model checking [2, 11, 27]. In particular, the techniques Reactis
uses to generate thorough suites of test cases from models / code are heav-
ily influenced by the state-space search methodologies used in on-the-fly model
checking [7, 12, 26, 48] (which is also sometimes referred to as local or tableau-
based model checking). They also employ constraint-solving procedures from
Satisfaction Modulo Theories (SMT) [3, 10, 36] tools. This foundational basis is
fundamental to the quality of Reactis’ performance, although other aspects of the
tools’ functionality have played essential roles in its success in the marketplace.

This paper traces the development of Reactis, from its formal-verification
roots, to its initial market-driven design, to its subsequent and ongoing devel-
opment. In particular, we highlight how the tools’ grounding in formal methods
has been a key factor in their eventual uptake, but this basis would not have
been sufficient on its own; other concerns have also been critically important.
The remainder of this paper is structured as follows. The next section describes
the origins of the Reactis tool, and in particular the research efforts of the RSI
founders before the company’s launch that informed the design and development
of Reactis. Section 3 reviews the launch of RSI, the initial vision of the founders
for the company as a developer and purveyor of model-checking tools, and a cru-
cial strategic pivot made early in the life of the company to focus on Simulink.
The section following discusses the initial design decisions of Reactis and their
relation to the founders’ choice to focus on Simulink. Section 5 focuses on the
commercial considerations inherent in obtaining customers for Reactis, and how
these considerations influenced subsequent additions and modifications to the
Reactis tool suite. Section 6 gives a snapshot of the current Reactis tools, while
the final section offers our concluding remarks and perspectives on the future.

2 Origins of Reactis: Formal Methods / Model Checking

This section describes the intellectual foundations of Reactis, with a focus on
research by the company founders (Cleaveland, Sims and Smolka) that laid the
groundwork for the launch of Reactive Systems Inc. and the design and devel-
opment of Reactive Systems’ tools.

Cleaveland and Smolka have been active researchers in the formal methods
community since the 1980s, both in collaboration with one another and with oth-
ers. Smolka was an early pioneer in the development of verification algorithms
based on bisimulation equivalence for finite-state systems [29, 30]. This style of
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verification has its roots in the process-algebra [5] community; it features the
use of a (higher-level) system models as specifications for (lower-level) system
implementations, with semantic relations such as bisimulation equivalence used
to check conformance between specification and implementation. Cleaveland and
others showed how bisimulation-equivalence and simulation-preorder [25] algo-
rithms could be adapted to compute a variety of other semantic-refinement re-
lations in process algebra [15]. Both Cleaveland and Smolka have also worked
on model-checking algorithms for finite-state systems and temporal logics, with
special attention to the modal mu-calculus [31], an expressive logic based on
fixpoints that can encode all known temporal logics. In model-checking-based
verification, specifications are given as formulas in a temporal logic, such as the
modal mu-calculus; a system is deemed to satisfy the formula according to the
logic’s semantics. In the case of finite-state systems and the modal mu-calculus
(as well as other temporal logics), this check can be decided algorithmically.
Cleaveland and Smolka have each contributed efficient algorithms for various
fragments of the modal mu-calculus [21, 33, 47] and have also designed strategies
for parallelizing model checking [49] and achieving improved practical perfor-
mance via translations of model checking into logic programming [41].

Of special note for the purposes of this paper is Cleaveland’s and Smolka’s
work on so-called on-the-fly [26] methods (these methods have also been called
local [48] and tableau-based [12]) for model-checking the mu-calculus [8, 12, 22,
32]. Traditional model-checkers compute the entire state space of a system, then
check whether the states in the state space satisfy the temporal formula in
question. In contrast, on-the-fly checkers generate states in a demand-driven
fashion, based on the formula being checked, leading to more efficiency when
not every state requires checking in order to determine the verification result.
This approach also permits approximations to model checking to be performed
by allowing some successor states to be omitted.

All four of the authors of this paper have developed research tools that im-
plemented verification algorithms and other analyses for finite-state systems.
Smolka and colleagues developed the Winston tool [34], which supported the
graphical creation of hierarchical networks of processes and included capabil-
ities for verification based on bisimulation and observational equivalence [35].
Cleaveland and colleagues created the Concurrency Workbench (CWB) [16], a
tool for verifying systems described in Milner’s Calculus of Communicating sys-
tems (CCS) [35]. A noteworthy feature of that tool was the compositional design
of its analysis routines; a variety of semantic equivalences and preorders were
implemented based on the combination of core equivalence routines combined
with semantic transformations of the systems being analyzed. The tool also in-
cluded a mu-calculus model checker. Cleaveland and Sims, whose PhD work was
supervised by Cleaveland, redeveloped the Concurrency Workbench, yielding the
ConcurrencyWorkbench of North Carolina (CWB-NC) [18]. That tool refactored
the design of the original CWB by decoupling the verification routines from the
syntax and semantics of CCS. This enabled the development of a tool, the Pro-
cess Algebra Compiler [13], that, given syntactic and semantic specifications of
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a modeling language, generates the necessary routines for building a CWB-NC
that analyzes system descriptions given in that language. Sims and colleagues
also worked on checking invariants of so-called Software Cost Reduction (SCR)
tabular specifications of systems [24] (these specifications are sometimes called
Parnas tables after their inventor [40]). The result of this work was the Salsa
tool for checking invariants of SCR models [6]. Hansel’s master’s thesis was su-
pervised by Cleaveland and Smolka, and focused on the generation of prototype
implementations of distributed systems from validated formal specifications; this
work is described in [23].

3 The Launch of Reactive Systems, and a Strategic Pivot

This section discusses the activities leading to the founding of Reactive Systems,
and also describes a key turning-point in the company’s strategy that led to the
development of Reactis.

3.1 Lead-up to the Founding of Reactive Systems

As the previous section notes, the co-founders of Reactive Systems had extensive
experience in the development of model-checking-based verifiers of finite-state
systems, including both theory and tool development as well as distribution
of these tools, primarily to other research groups. In the late 1990s, Cleave-
land and Smolka began discussing the possibility of commercializing verifica-
tion tools based on their research. The .com boom was in full swing, and both
thought that, given the successful uptake of formal verification in the so-called
Electronic Design Automation (EDA) marketplace for hardware design, and the
dearth of verification tools targeting software design despite the evident need
for improving software quality, there were market opportunities that could be
pursued. With other colleagues they developed a hierarchical modeling nota-
tion and analysis tool, the Concurrency Factory [14], heavily influenced by the
Winston tool [34], for the compositional modeling and verification of networks
of finite-state machines. Their intention was to commercialize the Concurrency
Factory; consequently, they applied for, and subsequently obtained, a patent for
the concept [19]. They then began looking for investors for the following idea:
a modeling and verification environment for concurrent / distributed software,
with an initial focus on telecommunications companies. Also during this time,
co-author Hansel arrived at Stony Brook University to work on his master’s
thesis under the supervision of Cleaveland and Smolka.

Meanwhile, after finishing his PhD studies at North Carolina State University
Sims had taken a job as a research scientist at the US Naval Research Laboratory
and was working on the Salsa tool [6] described above. Cleaveland and Smolka
approached him to see if he might be interested in joining their commercialization
effort; he agreed, and in 1999 the three incorporated Reactive Systems, Inc.,
still with the idea of developing and selling verification tools for concurrent
and distributed systems based on the Concurrency Factory’s bespoke modeling
framework.
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3.2 Early Reactive Systems: The Concurrency Factory

Once the company was launched, the founders needed capital to fund the devel-
opment of the envisioned Concurrency Factory tool. In late 1999, they applied
for a grant from the National Science Foundation (NSF) through the agency’s
Small-Business Innovation Research program, which provides research awards to
small companies to help them commercialize basic research. They were success-
ful in this endeavour; in June 2000, NSF awarded Reactis Systems enough funds
beginning June 2000 for six months of exploratory research for the Concurrency
Factory. The NSF grant also included a possibility for two years of additional
follow-on funding if the results of the first six-month phase were promising.

An important meeting. The company also needed a business plan, which re-
quired market research, so the founders had begun attending industry-leaning
conferences to gain insights into the prevailing commercial practices in software
quality. At the 19th Digital Avionics Systems Conference (DASC) in October
2000, Sims met a key contact, an engineer from an automotive OEM6. The
OEM engineer and Sims talked about the plans for Reactive Systems and the
software-verification techniques of the Concurrency Factory, as well as about
the software-validation techniques being used within the OEM. The engineer
admitted that a tool like the Concurrency Factory would be a hard sell within
his company, but that automated support for testing software against Simulink
models would be of serious interest. The OEM at that time was using Simulink
to design automotive subsystems, and there was an internal effort underway for
using these models to guide the development of the embedded software to be run
in these subsystems. Sims was intrigued, and the OEM engineer offered to send
Reactive Systems a couple of their Simulink models to see what our analyses
might infer about them.

This interaction between Sims and the OEM engineer, and the subsequent
collaborative pilot study that ensued, had a couple of profound long-term im-
pacts on the technical and business strategy of Reactive Systems.

First, the collaboration gave us our first experience working with automo-
tive engineers who were developing embedded software applications. In the early
2000s, the use of software in vehicles was just beginning its rapid growth towards
its current state, in which each new vehicle model contain dozens of micropro-
cessors and millions of lines of code. To this day, automotive customers make up
the largest component by far of Reactive Systems’ customer base.

6 In the automotive, and other, industries, companies are referred to as Original Equip-
ment Manufacturers, or OEMs, if they produce end-of-the-line products for cus-
tomers outside the industry. Car companies such as BMW and Toyota are OEMs,
for example. There is terminology for suppliers in these industries as well. Tier-1
suppliers sell their products to OEMs, while Tier-2 suppliers sell to Tier-1 suppliers,
etc. As an example, Robert Bosch is a Tier-1 automotive supplier that sells compo-
nents such as anti-lock braking subsystems to automotive OEMs. Companies selling
e.g. electronic components to Bosch would then be considered Tier-2 suppliers.



6 R. Cleaveland et al.

Second, the work with the automotive pilot study introduced us to Simulink
as a modeling notation for designing and implementing automotive applications.
As a startup with limited resources, the decision of which notation(s) our analysis
tools would support was one of the most important choices we had to make. We
also were in the midst of our initial NSF funding, and we had to decide whether
to devote these resources to continuing to develop an initial prototype of the
Concurrency Factory, which was based on our home-grown modeling notation, or
to work with our automotive OEM collaborator on the Simulink-model analysis
study. In the end we gambled that developing a relationship with a potential
reference customer was a better way forward than purely focusing on developing
our own modeling technology. Consequently, even though our familiarity with
Simulink was non-existent (we did know about MATLAB, however), we elected
to devote the remaining time of our initial NSF funding to pursuing the Simulink
pilot study with our OEM partner.

Simulink pilot study. After Sims’ return from DASC he contacted the OEM
engineer, and they defined the parameters of a pilot study involving one of the
OEM’s Simulink models (part of a powertrain7 application). There was of course
insufficient time to create any sort of analysis tool to run on the model. Instead,
we agreed to apply the Salsa invariant checker to the Simulink model provided
by the OEM [46], in order to see if there were any issues in the model the OEM
should be aware of. The model contained a number of Simulink subsystems
and Stateflow diagrams; the C code implementing the the model consisted of
approximately a thousand lines. Our experience has been that models of interest
to industry developers are rarely any smaller than this. In other words, any tool
we wanted to develop would need to handle models with at least this much
functionality.

To perform the analysis, we hand-translated the Simulink model into the
SAL input notation supported by Salsa. Simulink is a large language with a
complicated semantics, so this translation was the most time-consuming portion
of the work. It also clarified that expecting a customer to perform such a hand-
translation, or to implement an automated translator, was clearly impractical:
any tool would need to natively support a language, such as Simulink, directly
used by embedded software developers.

After performing this hand translation, we then applied Salsa to the gen-
erated model and discovered several anomalies in the original Simulink model,
including dead code (i.e. parts of the model that would never execute) and a
number of violations of the OEM’s modeling policies. These results caught the
attention of the OEM team, since the Simulink model had previously undergone,
and passed, a thorough manual review by OEM engineers. On the other hand,
some limitations of our approach were also clear. First, as mentioned above, ex-
pecting engineers to translate Simulink models into a notation like SAL was a

7 The powertrain of an automobile consists of all components responsible for delivering
power to a vehicle’s wheels. These include the engine, driveshaft, transmission, axles,
and differentials.
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non-starter. Second, even if an automated translation from Simulink to SAL were
implemented, we would still be constrained by the expressiveness of SAL, which
supported only boolean and integer state variables and linear constraints. Based
on the pilot study and subsequent discussions with the OEM team, we learned
that most automotive applications, at least in the powertrain area, included both
floating-point variables and non-linear constraints.

3.3 From the Concurrency Factory to Reactis

We received enthusiastic feedback from our OEM collaborators in response to
the pilot study, and this became part of our application to NSF for a second, two-
year round of funding. We planned to use this funding, which we were awarded
in March 2001, to support the construction of the first commercial release of
a tool that we could market to customers. The positive results from the pilot
study led us to believe that the automotive industry would be a fertile one for
our offerings, especially if our tools worked with Simulink. However, pursuing
this strategy would be at odds with our initial vision of selling model-checking
tools based on our own, Concurrency Factory, notation. What course should the
company pursue?

Of course, from a current-day perspective, it is clear what decision we arrived
at; we abandoned the Concurrency Factory and instead focused on developing
testing and validation tools for Simulink, i.e. Reactis. While this strategic shift
was initially driven in our minds by a market opening we perceived in a specific
industry, namely, automotive, our decision also exposes important considerations
regarding the commercialization of formal-verification tools. In academic formal-
methods research, much work focuses on algorithms and analysis routines; less
effort has traditionally been devoted to notational issues, such as modeling and
specification languages. Reactive Systems’ original focus on the Concurrency
Factory was very much rooted in the founders’ more foundational research; the
expectation was that industrial users would see the benefits of formal verification
and easily adapt their development processes to Reactive Systems’ home-grown
notations. Based on our pilot study, however, we realized that notational issues
are crucially important in practice: companies want assurances that the nota-
tions they train their engineers in will be used in years to come, and they want
an ecosystem of consultants and technical support to engage with on developing
their design processes to accommodate new technologies. For all its intellectual
rigor, the Concurrency Factory did not address these concerns. Simulink, on
the other hand, had already seen significant uptake in the automotive industry,
and there was substantial support for incorporating these notations into control-
system design practice. Consequently, building validation and testing tools tar-
geting Simulink removed a key barrier to developing a customer base that he
Concurrency Factory would have almost certainly been unlikely to overcome.
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4 Desiderata in the Design of Reactis

In order to achieve our goal of having a commercial version of Reactis ready
before the second phase of our NSF funding ran out, we knew that additional
technical talent would need to be added to the team. Consequently, in 2001,
co-author David Hansel accepted our offer for him to join Reactive Systems.

With our technical team in place, we then needed to make a number of
decisions about the design and development of Reactis. This section highlights
some of the important choices that we took.

4.1 Supporting Simulink

Our experience during the pilot study with our OEM collaborators told us that
supporting Simulink would be the promising route to obtaining customers in the
automotive realm. The question was, how should we do this?

We decided to retain our original verification strategy, which was based on the
state exploration / back-tracking approaches of on-the-fly model checking, but to
re-purpose these ideas for validating Simulink diagrams. We explain the rationale
for this choice more below; for now, however, we note that doing state-space
exploration on Simulink diagrams of course requires the capability of generating
states, computing transitions, and backtracking, i.e. restoring the system state
to a previously constructed and stored state.

Our original hope was to use the Mathworks’ simulation engine for these
purposes; this would ensure that our state and transition computations would
be fully consistent with those of Simulink, and also prevent us from having
to implement these routines ourselves. However, the MathWorks APIs did not
export the necessary functionality, and in our estimation it was quite unlikely
that The MathWorks would modify these APIs to suit our purposes.

We opted instead to build our own Simulink interpreter. This approach gave
us full access to all internals of states and transitions and in particular enabled
us to retrieve model information necessary for state exploration with backtrack-
ing. There were significant on-going costs and challenges associated with this
decision, however. To begin with, Simulink is a complex language, with a large
number of operators (or “blocks”) tuned for modeling control systems, and we
would need to guarantee to our customers that our interpreter implemented the
same semantics as The Mathworks, even as new versions of these notations were
/ are released. In addition, as a proprietary language, Simulink did not have a
reference semantics. This lack of an independent definition of the behavior of
Simulink has led to two different types of challenges over the years. The first is
that corner cases in the meanings of blocks have to be uncovered via trial and
error and extensive testing. The second is that customers sometimes misunder-
stand the intended semantics of the Simulink and will report bugs in Reactis
that are, in fact, not bugs at all, but rather due to misunderstandings about the
behavior of Simulink.

Our Simulink interpreter is built around a home-grown intermediate repre-
sentation based on ideas from synchronous languages [4], of which Simulink is
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also an example, at least for the language’s discrete (as opposed to continuous)
semantics. Our simulator translates Simulink into this intermediate language; it
then computes states and transitions for use in simulation on the intermediate
representations. (We briefly considered using C as this intermediate notation,
since there are tools for translating Simulink into C. However, these translators
involve significant license fees, and for cost reasons we decided to avoid them.)

4.2 Supported Verification Approaches

Our original, Concurrency-Factory-inspired, vision featured the use of model
checking to automatically determine if a given system model satisfied a formula
in temporal logic. We initially considered adapting this paradigm to Simulink,
but it did not fit well with our prospective customers design processes, which
did not involve the formulation of such properties. However, our early discus-
sions with industry professionals revealed interest in generic checks that should
be passed by all models. For example, no model should have dead code or run-
time errors such as divide-by-zero, out-of-bounds array indexing, or numerical
overflows.

There was also another key role played by models in the development pro-
cesses of the companies we spoke with: as specifications for the eventually de-
ployed vehicular sub-systems (including software). For example, a model might
be developed for a vehicle-transmission controller. The real-world controller
hardware would contain a microprocessor on which software would be deployed
to implement the behavior contained in the model. Confirming that the software
source code, and the sub-system containing the deployed executable generated
from the software, behaved consistently with the the model was of great interest
because of the possibility of detecting and fixing errors before the sub-system
was integrated into a larger vehicle design. Our industrial contacts, which had
grown to included automotive OEMs and Tier-1 suppliers in the US, Europe
and Japan, wondered if comprehensive suites of test cases could be automati-
cally generated from models and used in downstream testing, with the model
results being used as the oracle for judging the outcomes of software and sys-
tem testing. This use of models in testing was, and is, routinely referred to as
Model-Based Testing (MBT), and is part of a larger design paradigm called
Model-Based Design (MBD) that The MathWorks markets to its customers.

We were aware of uses of model checkers for generating test cases [1, 42]
in the research literature and decided to equip Reactis with support for MBT.
This Reactis feature allows users to decide on a level of “thoroughness” of the
test suite by specifying structural coverage criteria, such as Condition coverage,
Decision coverage, and Modified Condition / Decision Coverage (MC/DC) [9]
of the model. Reactis then attempts to generate test suites from the model that
achieve 100% coverage of the selected criteria. While these criteria have been
criticized in the literature for being insufficiently rigorous, they have the benefit
of being widely understood in industry and are included in various software
safety standards for automotive [28] and aerospace [44, 45].
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The tool also needed support for user interaction to generate test cases, for
a couple of reasons. First, users often had existing tests that they wanted in-
corporated into Reactis-generated test suites. Second, obtaining 100% coverage
may be impossible to achieve in reasonable time, and users need to be able to
manually add new tests to cover parts of the model that the Reactis test gener-
ator could not. Thus, we decided the tool needed an interactive test generator
to help users with these tasks, in addition to a fully automatic test generator.

Some users also wanted to undertake model validation via testing. The gen-
eral approach we decided to offer, which we call instrumentation-based verifi-
cation [20], is based on ideas similar to the use of assertion-checking in soft-
ware debugging. In traditional assertion-based debugging, users embed asser-
tions, or boolean properties, at points in their code; at run time, these asser-
tions are checked as the program executes, and violations are highlighted. In
instrumentation-based verification, the idea is to allow users to define assertions
in the form of monitor models, or small Simulink models with boolean outputs,
that could be used as instrumentation for the main Simulink model. Generated
test suites can then be run on the instrumented model, with any false outputs
of monitor models flagged as errors.

Based on these considerations the earliest versions of Reactis, as well as
current versions of software, included the following tools.

1. Reactis Tester generates a comprehensive yet compact test suite from a
Simulink model.

2. Reactis Simulator allows users to interactively run and modify test suites on
models, as well as debug models.

3. Reactis Validator checks if a Simulink model satisfies properties formulated
as monitor models that have been instrumented into the model.

Reactis also uses static analysis to check for dead code, as well as a variety of
run-time errors.

4.3 Verification Engine

With our desired verification functionality identified, we next needed to decide
how best to implement it. In particular, the most important, and also most com-
putationally intensive, operation was test-suite generation, and our experiences
to that point led us to believe it would not be feasible to directly use existing
model checkers or automatic theorem provers. The typical Simulink models that
we had seen were too complex for state-of-the-art techniques then available; they
often contain hundreds or even thousands of boolean, floating-point, and inte-
ger variables manipulated with the very rich (and continually growing) set of
operators supported by Simulink.

Our solution to this problem was to develop (and patent) a technique, called
guided simulation [17], for generating test cases that maximize coverage criteria.
The rough idea is the following. A given coverage criterion for test suites defines
a set of coverage targets that the suite must hit. For example, in Condition
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coverage, each atomic boolean expression in a model must be made both true
and false by some test in the test suite in order for the test suite to fully cover
the model. Each such expression therefore gives rise to two coverage targets: one
corresponding to the expression being true, and one associated with it being false.
In Reactis, a test case corresponds to a simulation run of the Simulink model
being tested, with each step in the run specifying the values of the (unconnected)
top-level inputs and also recording the (unconnected) top-level output values
produced in response to these inputs. Thus, generating a test suite attaining
100% coverage of a given coverage criterion can be phrased as a search problem
in the space of model simulation runs, with the objective of the search being to
ensure that every coverage target is hit by some test case. This general search
paradigm was inspired by our work with on-the-fly model-checking algorithms
described in Section 2, which in effect search for proofs that a state in a model
satisfies a given temporal property.

More specifically, our guided-simulation test-generation technique works by
generating simulation steps, starting from an initial state of the model and track-
ing which coverage targets have been hit and which have not. From an inter-
mediate state in a simulation run, Reactis selects the next inputs to provide in
order to guide the next step in the simulation to the corresponding target next
state, updating aggregate coverage-target data in the process. Input selection,
which is a key mechanism (along with backtracking) for guiding the simulation
being constructed, in turn involves two different strategies.

Constraint solving. A given coverage target can be viewed as a condition that
must hold in the middle of the execution of a model. When the system is in
a given state, we use techniques based on weakest preconditions to compute
constraints on top-level inputs whose solutions will guarantee coverage of
the given target. We then attempt to solve these constraints using Satisfac-
tion Modulo Theories (SMT) technology. The initial SMT solvers included
in Reactis were home-grown and supported boolean constraints and linear
constraints over reals (to approximate floating-point constraints). We later
switched to use the Z3 solver developed by Microsoft [36].

Monte Carlo. Values for top-level inputs are generated randomly, the target
state of the simulation step is computed, and coverage information is updated
appropriately.

These techniques have different strengths. When constraints can be formulated
and solved, SMT-generated inputs are guaranteed to extend coverage. However,
constraints may fall outside the theories supported by the constraint solver, or
have solutions that are too computationally expensive to calculate. Indeed, for
large models, even constructing the constraints can be infeasible. The Monte
Carlo method on the other hand generates new inputs very quickly and works
for any model supported by the interpreter, but at the cost of not guaranteeing
growth in coverage.

Users can also place range and rate-of-change constraints on the top-level
inputs of a model within Reactis. Reactis then ensures that these constraints
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are obeyed by any input values it generates, whether by constraint solving or
randomly.

Our search strategy also uses a number of heuristics to improve test-suite
coverage. These include, but are not limited to, ones for determining when a given
state is a good candidate for being the source of potential future coverage and
saving it; ones for when to abandon a given Monte Carlo run because coverage
is not growing and backtracking to previous states that are promising; and ones
for simplifying constraints to improve solver performance.

4.4 More on Coverage Metrics

The notion of coverage metrics / criteria for tests created from Simulink mod-
els derives from classical work done in the software engineering community for
programming languages [37]. Some well-known metrics defined for (traditional
imperative) programming languages include the following.

Statement coverage. Has every statement in a program been executed?
Decision coverage. Has every decision (i.e. maximal boolean-valued expres-

sion such as those appearing in loop guards and if-then-elese statements) in
a program evaluated to both true and false?

Condition coverage. Has every atomic boolean-valued expression in a pro-
gram evaluated to both true and false?

Reactis adapts these concepts to Simulink models. In addition, Reactis supports
a number of metrics tailored to the Simulink notation. For example, the state-
coverage criterion measures how many Stateflow states have been entered, while
the transition-coverage measure tracks the number of Stateflow transitions that
have fired.

The collection of metrics supported by Reactis has also expanded over time.
One early evolution resulted from our work with aerospace customers. The DO-
178B [44] (later updated to DO-178C [45]) safety standard for aviation software
requires that the most safety-critical software components be tested to achieve
100% coverage for the modified condition/decision coverage (MC/DC) metric [9].
The ISO 26262 automotive safety standard [28] subsequently adopted MC/DC
as the level of testing required for safety critical automotive software; this created
significant interest in this metric among our automotive customers, and we added
support for it into Reactis.

Another driver for expanding the Reactis coverage metrics was due to a de-
sire on the part of customers to have the coverage data for Reactis-generated
tests from Simulink models match the coverage results obtained from running
the test cases on (automatically generated) source code. For example, in 2009
we introduced so-called multi-block MC/DC coverage for Simulink into Reactis.
This criterion allows for the aggregation of a collection of Simulink Logical Op-
erator blocks into a single decision for the purpose of MC/DC tracking. This
criterion closely mimics the decisions created in C code that is generated from
such models, and which typically involves nested boolean expressions.
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5 Selling Reactis

In June of 2002, we released the first commercial version of Reactis, and the
business activities of marketing and selling the tool suite moved to the forefront
of our concerns. There are many aspects of building a community of customers
and users around a tool, and we will not describe all of these here. However, some
features of building and maintaining a successful commercial tool have impacts
on decisions regarding its technical development, and we describe several of these
in this section.

Engineers in industry, especially those in a company’s business units (as op-
posed to research and development), have numerous responsibilities related to
a company’s source of revenue — its products and services. For this reason,
they typically have limited time to explore new tools and think about how they
might evolve their development processes to accommodate them. In order to
successfully sell Reactis, we needed to develop materials, including white pa-
pers, presentations and other marketing collateral, that explained not only the
functionality of Reactis, but also how it could be deployed in different industrial
scenarios. A substantial amount of our post-release resources were devoted to
developing these materials, and to visiting prospective customers both to market
our tool but also to learn how their internal model-based design processes were
organized, so that we could offer tailored suggestions on how Reactis could be
usefully deployed. We also offered training courses for customers at their sites.

In our experience, driving adoption of Reactis within companies has required
extensive collaboration between Reactive Systems and the Reactis users within
those companies. New users will need training, and users of all types will from
time to time need advice on how to access and best use tool functionality. Users
will also stumble across functionality they don’t expect (either intended, or
buggy), and want guidance from Reactive Systems on what to do. For its part,
Reactive Systems gains direct insights into user experiences through its interac-
tions with users, which give valuable feedback for refining Reactis to flatten the
learning curve and best address specific needs in user-development processes. For
this reason, the company has policies for responding quickly to all user requests.
These interactions consumes significant resources, but we view user support as
a key component of our business strategy.

Tool users also often request new tool features. A case in point for Reactis
was its treatment of C code embedded in Simulink diagrams. Simulink offers sev-
eral ways to incorporate C code into a model, including S-Functions, C Caller
blocks, and C code called from Stateflow. In each case, a portion of the model’s
functionality is determined by this C code. Early versions of Reactis treated C
code in a model as a collection of black boxes. Reactis would compile the embed-
ded C code and use it to compute the semantics of the given model component,
thereby enabling simulation and test generation for these models. However, cov-
erage was not tracked in the C code, and it was not possible to step into the C
code for debugging (another use case of the Reactis Simulator). In response to
user requests for the capability of tracking coverage information for this C code,
in 2007 Reactive Systems launched the Reactis for C Plugin product, which en-
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abled white-box testing for the C code parts of a model. With the C Plugin,
coverage targets are identified within the C code, and Reactis Simulator is able
to step into the C code during simulation. After positive feedback from cus-
tomers on the C Plugin, in 2011 the company packaged this functionality for C
into a separate tool suite, Reactis for C, which supports Reactis validation capa-
bilities, including test generation, coverage tracking, and assertion verification,
on ANSI C code. This tool reused significant parts of the original Reactis ver-
ification engine and drew upon experience we gained in developing customized
versions of the Concurrency Workbench of North Carolina using the Process
Algebra Compiler [18].

Of course, promising new functionality but not delivering it until much later
can sour tool users on the tool in question. In the case of Reactis, we addressed
this by scheduling new releases twice a year and also making beta versions of
new functionality we were planning on releasing to users who had requested it.

The importance of engagement with, and responsiveness to, users cannot be
overstated, and it highlights a crucial difference between traditional research
tools and commercial ones: significant technical resources must be devoted to
ensuring users can effectively and efficiently use tool functionality in order for
the tools to be successful in the marketplace. In an academic setting, it can be
difficult to justify these expenditures, since researchers and students naturally
wish to focus on implementing new ideas of their own. In an industrial setting,
on the other hand, without users there cannot be a tool!

6 Current State of Reactis

The most recent version, V2023.2, of Reactis was released in December of 2023.
This release includes new versions of the following tools.

– Reactis Tester, Reactis Simulator and Reactis Validator, which target test-
generation, model debugging and model validation for Simulink.

– Reactis for C Plugin, which is used in conjunction with the Reactis tools for
Simulink to provide analytical capabilities C code that may be embedded in
models.

– Reactis for C, which provides testing, simulation and testing capabilities for
ANSI C code.

Each of the above categories of tools are licensed separately. That is, users would
buy separate licenses to Reactis, which includes Tester, Simulator and Validator;
to Reactis for C Plugin (which requires a license for Reactis); or to a license to
Reactis for C (which is independent of the other tools).

In addition, the V2023.2 release includes licensing possibilities for two addi-
tional tools. The Reactis for EML Plugin, first released in 2015, supports white-
box testing of the Embedded MATLAB (EML) portions of a model. EML is the
subset of the MATLAB language that MathWorks supports for the generation
of embedded C code. Simulink offers the capability to incorporate EML into
a Simulink model, for example, in a MATLAB Function block or as a callable



Two Decades of Industrializing Formal Verification: The Reactis Story 15

from Stateflow. With the EML Plugin, coverage targets are identified within the
EML code, Reactis Tester attempts to exercise these targets, and Reactis Simu-
lator steps into EML code for debugging and coverage visualization. To use the
Reactis for EML Plugin, a user must also have a license for Reactis. Our Reac-
tis Model Inspector tool enables users to navigate models. It does not include
testing or validation functionality and is intended to support (read-only) model
auditing and review.

7 Conclusions and Perspectives on the Future

In this paper we have given a brief history of the development of Reactis, a com-
mercial tool suite we have developed over the past 20 years that uses ideas from
formal methods to provide testing and validation support for Simulink and ANSI
C. In the course of the paper, we have highlighted both the foundations of Re-
actis in model-checking research but also places where we needed to depart from
the academic tool-development paradigm, and why. We are very strong believers
in the value of formal methods. We also believe that adapting the techniques
to industrial settings requires sustained effort and insight into company needs
and concerns, so that engineers in these organizations can derive the benefits
of this technology and verification-tool developers can maximize the impact of
their offerings.

In terms of future plans for Reactis, at present, companies in over 20 different
countries have acquired Reactis. Most users are in the automotive industry,
although a significant number of users work in aerospace and defense companies.
In general, different industries have different modeling cultures and use different
notations as a result. While Simulink users are widespread, other modeling tools,
such as LabVIEW [38], have strong user bases as well. Developing a “Reactis
generator” for such modeling notations is something we see as a possibly fruitful
direction for future development, as a way of expanding the Reactis market. Of
course, such a development would need a business case, to include not only a
significant body of users but also an industrial culture that is willing to pay
for tools that support software design, development, and validation. We also
are tracking developments in SMT tools with a view towards enhancing future
versions of Reactis.

In terms of future prospects for industrial uptake of formal verification, we
see reasons for optimism, provided the tools are appropriately targeted. For
example, we do not see much of a market for “generic software-verification tools”
that would be on par with, for example, compilers in terms of their widespread
adoption. A primary reason for our pessimism on this front is two-fold. On the
one hand, generic software-development tools are widely expected to be no-cost
in the marketplace, which limits the financial return available to developers
wishing to introduce formal-methods capabilities into them. On the other hand,
much “generic software” has traditionally had relatively relaxed expectations
in terms of functional correctness on the part of the software’s users, meaning
software companies have incentives to devote more development resources to
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new features and less to quality assurance. However, in many “non-software”
industries whose products include significant software, expectations on the part
of users, regulatory agencies, and insurance companies for correct functional
behavior are much higher, and we see ongoing significant opportunities for formal
methods in these sectors. The automotive and aerospace / defense sectors fall
into this category; so do medical devices, household appliances, infrastructure
(electricity, water, transportation, data communications, etc.), and banking, to
name a few. Finally, consumers, companies, and governments are increasingly
concerned about privacy and cybersecurity. While historically there may have
been a certain tolerance for software functionality shortcomings, there is growing
push-back against cybersecurity vulnerabilities. A 2024 report [39] by the US
Office of the National Cybersecurity Director highlights the importance of formal
methods as a tool for improving cybersecurity, and the cloud-services sector, for
example, offers an interesting future opportunity for commercial applications of
formal methods for this purpose, in our view.
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