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Abstract. Automated reasoning techniques have been proven of im-
mense importance in classical applications like formal verification, circuit
design and probabilistic inference. The domain of quantum computing
poses new challenges of a different nature, such as the compilation of
quantum circuits, which involves “quantum-hard” tasks such as the sim-
ulation, optimization, synthesis, and equivalence checking of quantum
circuits. We ask the question of how effective the methods motivated by
classical automated reasoning can be for quantum compilation. We assess
their current applicability to this new domain by discussing the recent
advances. In particular, we focus on three core automated reasoning ap-
proaches: decision diagrams, satisfiability and graphical calculus-based
methods. In this survey, we explain in a manner accessible to those un-
familiar with quantum computing concepts how these prominent auto-
mated reasoning methods have found numerous applications in quantum
circuit compilation. We find that surprisingly all considered reasoning
methods, while originally developed for classical purposes, can excel at
various compilation tasks for even universal quantum circuits.

1 Towards Quantum Supremacy

Quantum supremacy [137] is the question of obtaining the first example of a
problem for which quantum computers provably surpass classical computers in
theory and/or practice. There are various reasons to pursue this challenge [193].

First, technology advance has led to the miniaturization of classical com-
puters, rendering them powerful and cost-effective. However, this trend has now
extended into the micro-level where quantum phenomena come into play, causing
insurmountable hurdles for further miniaturization. Alternatively, the embrace
of quantum effects could lead to further miniaturization and innovation.

Second, quantum computing (QC) holds the promise of revolutionizing the
field of computation by surpassing classical computers in terms of efficiency,
particularly in tackling tasks that are deemed classically intractable [121, 113].
Quantum algorithms can leverage quantum phenomena like entanglement and
constructive interference to tackle problems beyond the reach of classical com-
puters. For example, for period finding, Shor’s algorithm features a performance
exponentially faster than their best-known classical versions [121].



Third, theoretical computer science aims to understand the strengths and
limitations of the most powerful computers that nature allows. So it makes sense
to focus on studying the potential of quantum computers which are closer to the
limit of our current understanding of nature. Physicists, chemists, and other
scientists are constantly dealing with quantum-hard problems like Hamiltonian
simulation, computing ground state energies, etc. This is where Feynman’s con-
ception of the quantum computer originated [104].

However, despite progress [6, 89], quantum supremacy for useful problems
remains elusive. A large-scale quantum computer with sufficient error-correction
is yet to be built. On the theory side, one cannot rule out the possibility that
the runtime of certain quantum algorithms gets matched by new classical algo-
rithms. This has happened before. The quantum recommender algorithms were
thought to be exponentially faster than their classical counterparts, however,
Tang [163] showed (at the age of 18) that there exist classical algorithms with
similar asymptotic performance.

Nonetheless, a good reason to remain optimistic about this kind of research
is that challenges in quantum circuit compilation are of exactly the same nature
as challenges with which physicists and quantum chemists struggle, as expressed
in the third point above. (Not to mention that Tang’s proof has led to a class of
improved, quantum-inspired, classical algorithms.) Therefore, progress in QC is
progress in fundamental research that has the potential to advance our under-
standing of the many quantum-hard problems that nature confronts us with.

Gate-based quantum computing, one of the most prevalent models of quan-
tum computing, involves the utilization of a limited set of quantum gates, specif-
ically reversible operators designed to manipulate qubits. These operators form
quantum circuits, which are not necessarily unique, meaning that different cir-
cuits that implement the same computation can exist. In the current era of noisy
intermediate-scale quantum computing (NISQ) [138], there are many challenges
that we need to overcome when compiling quantum circuits into real-world de-
vices. Such challenges are the high noise levels, the shallow depth of the circuits
that can be practically implemented, and the various constraints (connectivity,
topology, native gate sets, etc.) [65, 46]. It is evident that circuit compilation
problems form an important hurdle on the road to achieving quantum supremacy.

A promising range of techniques for addressing these questions exists within
the field of automated reasoning. In the analysis of (classical) system behavior,
computer scientists are often dealing with a combinatorial explosion. As a con-
sequence, many powerful formalisms and approaches were developed to reason
about such systems. For instance, decision diagrams [29, 3], satisfiability [21]
and theorem provers [24, 19, 130, 99, 115], offer rigorous techniques to verify the
behavior of classical systems and ensure their accuracy and dependability.

The state of n quantum bits is generally represented as 2n complex val-
ues [121]. Consequently, already the simulation of quantum circuits, a core task
in circuit compilation, as we will see, must tackle a combinatorial explosion
similar to that encountered when analyzing the behavior of classical systems.
Hence, many of the techniques traditionally used for the analysis of classical sys-
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tems in the field of automated reasoning and formal methods have been proven
useful for quantum circuit compilation. For instance, decision diagrams have
been established as efficient analysis and optimization tools for quantum cir-
cuits [199, 187], model counting shows promise for simulation [107] and equiv-
alence checking [108], satisfiability for analysis of non-universal quantum cir-
cuits [17, 189, 195], satisfiability modulo theories for circuit verification [12, 39]
and equivalence checking [4, 5], and theorem-prover-style deductive approaches
for simulation and equivalence checks [131, 59, 185]. In the context of quantum
computing, the most prominent type of theorem provers is graphical calculi, so
we will narrow the discussion about theorem provers to graphical calculi.

This survey aims to comprehensively document the progress of the transfer
of ‘classical’ automated reasoning tools to the relatively new field of quantum
computing. The following methodology was utilized to define its scope. We con-
centrate on the following three core automated reasoning approaches, focusing
on some of the most prominent ones employed for quantum circuit compilation.

– Decision diagrams;

– Satisfiability (SAT / SMT / #SAT);

– Graphical calculus-based methods

For each, we used Google Scholar to identify the ten most relevant publications
applying the particular method to a task in quantum compilation, as defined
in Section 3 to include the simulation, synthesis, optimization, and equivalence
checking of quantum circuits. We use the search terms “decision diagrams” /
“satisfiability / “SAT” / “SMT” / “Graphical calculi” and “quantum circuit”.
The publications outside the scope of our paper are discarded. Starting from
these works, we did a literature review following the trace of citations. We ex-
plicitly exclude formal verification, such as model checking and Hoare logic-based
deduction, from our queries, as we are mainly interested in how automated rea-
soning methods transfer onto progressing the quantum supremacy challenge and
not how formal verification can be lifted to the quantum domain. In this, our sur-
vey differs substantially from earlier surveys [38, 100], which focus on correctness
verification of quantum circuits and algorithms.

The text is structured as follows. We first introduce quantum computing in
more detail in Section 2. We then define what we mean by quantum circuit
compilation by discussing the challenging tasks it encompasses in Section 3. In
Section 4-6, we discuss in detail how the three automated reasoning approaches
found applications in quantum circuit compilation. We also report on automated
reasoning that superseded the particular version tailored to quantum computing,
finding for instance an interesting parallel in the early invention of decision
diagrams representing pseudo-Boolean functions (i.e., quantum states) and their
later development in quantum computing.

In Section 7, we also discuss other methods that we could identify as used for
quantum circuit compilation (some drawn from physics, such as tensor networks
or path integral-based methods). We conclude in Section 8 that automated rea-
soning methods originally developed for classical problems also excel in various
compilation tasks and will likely find more applications in quantum computing.
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2 Fundamental Concepts of Quantum Computing

In this section we briefly explain the core concepts of quantum computing. The
goal is not to give a complete overview of all of the underlying mathematics, but
rather to familiarize the reader with some of the concepts and terms used. For
a comprehensive overview of quantum computing, we refer the reader to [121].

Quantum states. Where classical states are described by bits, quantum states are
described by quantum bits (qubits). A qubit, just like a classical bit, can be in a
state 0 or 1, described by vectors |0⟩ =

[
1 0

]⊺
and |1⟩ =

[
0 1

]⊺
. Unlike classical

bits, qubits can be in superposition, described by a linear combination of the |0⟩
and |1⟩ states. Concretely, the state of a qubit is given by |ψ⟩ = α0 |0⟩+α1 |1⟩ =[
α0 α1

]⊺
, with α0, α1 ∈ C and |ψ⟩ a unit vector (i.e. |α0|2 + |α1|2 = 1).

Another key difference between classical bits and qubits is how multi-(qu)bit
systems are composed. Whereas as n-bit state can simply be described by a bit
string b ∈ {0, 1}n, multi-qubit states are composed from single-qubit states by
means of the tensor product. Intuitively, this tensor product is similar to the
Cartesian product of sets. Formally, the tensor product of an ra × ca matrix A
and an rb× cb matrix B yields a matrix A⊗B of dimension rarb× cacb equal to

A⊗B =

A11B A12B · · · A1caB
...

...
. . .

...
Ara1B Ara2B · · · AracaB

 .
For example, for two single-qubit states |ψA⟩ =

[
α0 α1

]⊺
and |ψB⟩ =

[
β0 β1

]⊺
,

we get that |ψA⟩ ⊗ |ψB⟩ =
[
α0β0 α0β1 α1β0 α1β1

]⊺
. In general, the state of n

qubits is given by a 2n-dimensional vector. For convenience, we define |b⟩ =
|b1⟩ ⊗ |b2⟩ ⊗ ...⊗ |bn⟩ for |b⟩ ∈ {0, 1}n. Observe that |b⟩ = eb, i.e., a 2n-length
vector with only index b ∈ {0, 1}n set to 1 and the other entries to 0.

Similar to the conjugate of a complex number, a quantum state |φ⟩ =[
α0 α1 ... α2n

]⊺
has an ‘adjoint’ ⟨φ| = (|φ⟩∗)⊺ =

[
α∗
0 α

∗
1 ... α

∗
2n
]
, i.e., its trans-

pose, a row vector, with all complex entries conjugated. Observe that ⟨b|φ⟩ = αb.
All states must have unit length, which we can now formulate as ⟨φ|φ⟩ = 1.

It is important to note that some joint states cannot be decomposed as a
tensor product of smaller states. Such states are entangled. For example, states
|ψ3⟩ = 1/

√
2(|00⟩+ |11⟩) =

[
1/

√
2 0 0 1/

√
2
]⊺

and |ψ4⟩ from Figure 1 are entangled.

Quantum operations. There are two types of operations on quantum states:
gates, and measurements. Quantum gates are linear maps that are information-
preserving (i.e., reversible) and norm-preserving. This makes it so that an n-qubit
quantum gate U is given by an 2n×2n unitary matrix, where unitarity is defined
as UU† = U†U = I with U† = (U∗)⊺ denoting the conjugate transpose of U .

The effect of a gate (matrix) on a qubit state (vector) is computed through
matrix-vector multiplication. A sequence of quantum gates acting on a state is
typically visualized in a quantum circuit (Figure 1). Some examples of quantum
gates are the Pauli gates (X,Y, Z) and Clifford gates (H,S,CNOT).
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X =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]
Y =

[
0 −i
i 0

]
H =

1√
2

[
1 1
1 −1

]
S =

[
1 0
0 i

]
CNOT =

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
To give an intuition, the X gate acts as a classical bit-flip and the Z and S

gates as a ‘phase-flip’ on |1⟩, yielding − |1⟩ and i |1⟩ respectively, the Hadamard
(H) gate brings a qubit from the |0⟩ state into a uniform superposition of |0⟩
and |1⟩, and the two-qubit controlled-not gate (CNOT) acts as a bit flip on a
‘target’ only when the control qubit is one. Combined with the Hadamard, the
CNOT gate can produce entangled states (as in Figure 1).

We say that two unitaries U and V are equivalent up to ‘global phase’ if
U = cV , where c ∈ C. The term ‘global phase’ refers to the complex factor c,
which does not affect any observable properties of unitaries [121].

A (standard) measurement of a qubit in the state |ψ⟩ = α0 |0⟩ + α1 |1⟩ col-
lapses the qubit onto the |0⟩ (|1⟩) state, with probability equal to |α0|2 (|α1|2).
For measuring a single qubit within a multi-qubit state |φ⟩, we note that it can
always be written as |φ⟩ = α0 |0⟩ ⊗ |φ0⟩ + α1 |1⟩ ⊗ |φ1⟩, where |α0|2 and |α1|2
again correspond to the probabilities of collapsing to the |0⟩ and |1⟩ states.

The stabilizer formalism. The final concept we introduce is the stabilizer formal-
ism [69], which describes a class of quantum circuits and corresponding quantum
states that are known to be classically simulatable in polynomial time.

The circuits in question are those composed of Clifford gates, which are
all quantum gates that can be generated (under multiplication and the tensor
product) from H, S, and CNOT. The stabilizer states are all states that can
be produced by a Clifford circuit initialized to the all-zero state |0⟩⊗n

. Any
stabilizer state can be represented by a set of n “stabilizers”. In this context, a
matrix P ∈ {±P1 ⊗ ...⊗ Pn | Pi ∈ {X,Y, Z, I}} is a stabilizer of an n-qubit state
|σ⟩ if |σ⟩ is an eigenvector of P , i.e. P |σ⟩ = ± |σ⟩. Tracking these n stabilizers
(including the ± sign) can be done with 2n2 + n Boolean values, which are
typically encoded in a so-called stabilizer tableau.

|0⟩ H

|0⟩ X

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩ |ψ1⟩ = |0⟩ ⊗ |0⟩ = |00⟩ =
[
1 0 0 0

]⊺
|ψ2⟩ = (H ⊗ I) |ψ1⟩ =

[
1/

√
2 0 1/

√
2 0

]⊺
|ψ3⟩ = CNOT |ψ2⟩ =

[
1/

√
2 0 0 1/

√
2
]⊺

|ψ4⟩ = (I ⊗X) |ψ3⟩ =
[
0 1/

√
2 1/

√
2 0

]⊺
Fig. 1. An example 2-qubit quantum circuit. Each qubit is represented by a horizontal
wire, and operations are applied from left to right. As is common, we write |xy⟩ as
shorthand for |x⟩ ⊗ |y⟩. Measuring both qubits after obtaining |ψ4⟩ = 1/

√
2(|01⟩+ |10⟩)

gives |01⟩ or |10⟩ each with probability |1/√2|2 = 1/2.
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Moreover, this tableau can be efficiently updated to implement the semantics
of any Clifford gate. The fact that stabilizer states are representable by a succinct
and easy-to-update representation makes Clifford circuits classically simulatable.

It is important to note that while stabilizer states play an important role
in quantum computing, such as in quantum error correction [78, 164, 16, 98]
and measurement-based quantum computing [141], they are by themselves not
sufficient for universal quantum computation. Generalizations of the stabilizer
formalism further allow a complete discretization of the (universal) quantum
state space as we shall see in subsequent sections.

By adding a single non-Clifford gate, like a T gate or any arbitrary rotation
gate RX , RY , RZ , to the Clifford gate set, we obtain universal quantum comput-
ing [120]. Stabilizer-rank-based methods [28] allow (classical) fixed-parameter
tractable simulation in the number of T gates in the circuit.

3 Challenges of Quantum Circuit Compilation

Quantum circuit compilation is the process of mapping an instance of a quantum
algorithm to a specific quantum hardware, i.e., a specific quantum processing
unit (QPU). A more efficient mapping can bring us closer to quantum supremacy,
especially when we aim to identify useful problems at which quantum computers
excel, since they are likely to require structured circuits instead of randomized
ones [6]. As instances, we will consider circuits, and not programming languages
(which can be translated to circuits), since we are interested in suing automated
reasoning for hard problems. There are multiple problems crucial to quantum
circuit compilation. For this text, we focus on the following tasks.

1. Circuit Simulation: Classical simulation of quantum circuits enables basic
analyses, but, as we shall see, is also often a sub-task in other compilation
tasks. Better simulation methods arguably translate into improvement in
other compilation tasks. We can distinguish two types of simulation.
(a) Strong Circuit Simulation: Given a quantum circuit, and a compu-

tational basis state, compute the probability of measuring that state.
(b) Weak Circuit Simulation: Given a quantum circuit, sample from the

probability distribution of its measurement outcomes.1

2. Circuit Optimization: Given a quantum circuit and a set of hardware
constraints, produce another circuit that represents an equivalent compu-
tation satisfying the constraints. The new circuit should match the hard
constraints posed by the QPU, such as topology (i.e., connectivity between
qubits), as well as soft constraints that allow the reduction of execution time
and noise exposure introduced by imperfections in the QPU. For example,
certain gates might be more expensive in terms of noise or entangling cer-
tain pairs of qubits could be more error-prone [10]. Tasks such as explicitly
reducing the number of gates in a circuit fall in this category [158], as well
as other tasks such as layout synthesis and qubit mapping and routing [112],

1 Measurements can always be deferred until the end of the circuit [121, §4.4].
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which consist of mapping a logical circuit into a hardware-aware one that
satisfies the physical qubit-connectivity constraints.

3. Circuit Synthesis: Given a specification, produce a quantum circuit that
adheres to it [58]. This specification can be relational, e.g., another circuit
or a Hoare logic expression [196], or simply an input and output state, in
which case, we speak more specifically of quantum state preparation. The
specification can also be a unitary, in which case we speak of ‘decomposition’.
Synthesis is often combined with optimization. In that case, the specification
is extended with the soft and hard constraints discussed above.

4. Circuit Equivalence Checking: Given two circuits, decide whether they
represent equivalent unitaries. Since circuit compilation tasks modify cir-
cuits, having a method for checking the correctness of the result is essential.

Although we have categorized the tasks into four main categories, it is im-
portant to note that they come in a whole spectrum. For example, there are
many hardware constraints under which one can optimize and trade-offs come
into play. Moreover, a heuristic solution is sometimes good enough for soft con-
straints. While we are mainly interested in sound and complete methods, since
they match the capabilities of the considered automated reasoning techniques,
we also include heuristic solutions built on automated reasoning.

Each compilation task can be defined as an exact or approximate problem
(i.e., with bounded error like in the classical class BPP). For instance, exact
equivalence checking requires that the unitaries are equal up to global phase (see
Section 2), while approximate checking merely requires that the two unitaries
always produce the same states up to a certain fidelity [103, 82] (a measure
for ‘closeness’ of two quantum states [121]). The complexity classes for exact
problems depend strongly on the gate set, because the gate set determines the
reachable states [67]. On the other hand, the bounded-error complexity classes,
where BQP is the quantum analog of P and QMA the quantum analog of NP [94],
are invariant under the gate set (a motivation behind their definition). The exact
version is harder, e.g., exact strong simulation is already #P-complete [120, 88].
Nonetheless, exact reasoning can be appealing because it allows discretization.2

Surprisingly, exact reasoning methods are even used to compute the approximate
versions of these compilation tasks. For example, [184, 82] even solve the “quan-
tum NP”-hard circuit equivalence, which is QMA-hard [84] to approximate and
NQP-hard [162] to compute exactly. Exact reasoning also allows linear #SAT
encodings of simulation and equivalence checking [107, 108] (see Section 5) and
is used extensively in ZX-calculus (see Section 6).

In Section 4–6, we detail the applications of three main automated reasoning
approaches in quantum circuit compilation. We focus on the historical context
and the technical aspects that have influenced the adaptation and evolution of
these automated reasoning methods in this new application area. This illustrates
how quantum circuit compilation benefited from automated reasoning techniques
originally developed for reasoning about classical systems.

2 With a ring discretizing all complex numbers calculable in a given gate set [92, 67].
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4 Decision Diagrams

To point out parallels in the early development of decision diagrams and their
later use in quantum computing, we order this section mostly chronologically.

Historical Background. Akers [3] defined the binary decision diagram (BDD)
for compactly representing a Boolean function f : {0, 1}n → {0, 1}. Bryant [29]
established the importance of BDDs by giving efficient manipulation algorithms
that can compute F ◦G where F,G are any functions represented as BDDs and
◦ is any Boolean operator. Using Bryant’s work as a basis, operations have been
invented for quantification [106], matrix multiplication [66, 56], and even reacha-
bility [25]. With the multi-terminal [40] or algebraic decision diagram (ADD) [9],
BDDs were generalized to support the representation of pseudo-Boolean function
f : {0, 1}n → D for any (ring-structured) domain D ∈ {R,C, ...}.

The main idea that led to the construction of decision diagrams can be traced
back to Boole and his identity formula f = (x∧ fx)∨ (x∧ fx) [22], where fx, fx
are the sub-functions with variable x restricted to 1, 0 respectively. This is the
expansion identity (also known as decomposition identity or Shannon decompo-
sition) and is often attributed to Shannon since its appearance in his paper on

x1

x2 x2

x3 x3 x3 x3

1 2 1 −2

f

Decision tree

000 :

001 :

010 :

011 :

100 :

101 :

110 :

111 :



1

0

2

0

1

0

−2

0



x1

x2 x2

x3 x3 x3

2 1 −2

f

ADD

x1

x2 x2

x3

1

f

1

2 1

−2

EVDD

x1

x2

x3

1

f

Z ⊗ I

2 · I

LIMDD

Fig. 2. A pseudo-Boolean function f(x1, x2, x3) = x3 ·(2 ·x2 ·(x1−x1)+x2) represented
as (non-normalized quantum state) vector and as an (exponentially-sized) decision tree.
A node labeled with variable x represents a Shannon decomposition on x. An outgoing
dashed edge represents the sub-functions where the variable x is restricted to false (0)
and a solid edge where the variable is restricted to true (1). The boxes represent leaves.
We omit zero leaves.
From a decision tree to algebraic decision diagram (ADD): The red node is merged
into the green as both represent the same sub-function f00(x3) = f10(x3) = 1− x3.
From algebraic decision diagram to edge-valued decision diagram (EVDD): The purple,
green, and blue nodes represent sub-functions that are equivalent up to a constant
factor of 2, 1, -2 respectively. By putting the factors on the edges, these equivalent
nodes can be merged. Unlabeled edges have implicit factor 1.
From edge-valued decision diagram (EVDD) to LIMDD: The Pauli LIM Z ⊗ I maps
f0 to f1 (as vectors, i.e. (Z ⊗ I) · [ f100 f101 f110 f111 ]

T = [ f100 f101 −f110 −f111 ]
T = f0).

Both x2 nodes can thus be merged by putting this map on the (high) edge. Unlabeled
edges to nodes xi have implicit map 1 · I⊗i.
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classical circuits [152]. This decomposition can be viewed as “peeling off” a single
variable x. By iterating this process on sub-functions, we can build the typical
exponential binary tree ending with 0, 1 leaves as illustrated in Figure 2 for a
pseudo-Boolean function. Note that this results in a total variable order along
a path in the decision diagram: All decision diagrams discussed here fix a single
variable order along all paths as this crucially enables the efficient manipulation
operations given by Bryant [29]. When decision diagram nodes in this binary
tree represent the same sub-function, e.g., two leaf nodes with same value, they
are merged. For many practical functions, such as those arising in verification
problems, this node merging can result in significant size reductions.

Lai, Pedram and Vrudhula [97] first showed that the ADD structure can be
made more succinct by merging nodes that represent equivalent sub-functions up
to a constant additive factor, which is then placed on the edges. Tatershofer and
Pedram [159, 160, 179] improved on this by also allowing multiplicative constants
p apart from the additive constants a, i.e., affine transformations p · f + a. By
requiring the domain D to be a semi-ring, Wilson [191] defined the semi-ring la-
beled decision diagram (SLDD) that factors out only multiplicative constants. In
line with the early inventors, we call all these structure “edge-valued decision di-
agrams” (EVDDs). Figure 2 illustrates how an ADD is compacted as an EVDD,
with the factored out multiplicative constants on the edges. Finally, Sanner and
McAllester [147] developed affine ADDs (AADDs), and Fargier, Marquis and
Schmidt [62] generalized and related various of the above decisions diagrams.

As in all data structure design, there is a trade-off between succinctness and
efficiency of operations. Darwiche [52] first mapped these trade-offs for different
data structures representing Boolean functions. His ‘knowledge compilation map’
shows, inter alia, that, for BDD, basic Boolean operations are efficient, but more
complicated operations like unbounded quantification are not, which was already
known from the fact that poly-time matrix multiplication with BDDs would
imply P = NP [106] and that reachability using BDDs is PSPACE-hard [63].

Later, Fargier et al. [62] showed that more or less similar results hold for
manipulation operations on ADDs, replacing Boolean operations for point-wise
addition, multiplication, and min/max computations in the pseudo-Boolean do-
main. However, they also show that basic operations, such as point-wise addition,
become intractable for EVDD and AADD. This affects the implementation of the
Hadamard gate, as we discuss in the next section. On the other hand, this worst-
case analysis obfuscates the fact that there are no functions for which AADD
or EVDD is slower on point-wise addition than ADD [147]. This is because the
intractability for AADD / EVDD addition only occurs when the corresponding
ADD would already be large for representing the input functions.

The structural differences between these different decision diagrams are sum-
marized in Table 1, which also summarizes the chronology, includes references
and the quantum-inspired decision-diagram versions discussed next.
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Table 1. Various decision diagrams (DDs) used in the literature (extended from [177]).
The column “node merge” lists the conditions under which two decision diagram nodes,
representing functions f and g, are merged. Here, p, a ∈ C are complex constants,
P = P1 ⊗ ... ⊗ Pn a sequence of single-qubit Pauli gates Pi, and f + a means the
function f(x⃗) + a for all x⃗. All DDs, except QDD, have complex scalars as terminals
and their internal nodes v, w thus represent functions f, g : {0, 1}n → C. In QDD,
the terminal node represents the |0⟩ vector, and thus QDD can be seen as functions
f, g : {0, 1}n−1 → C2. Here RX is a single-qubit rotation operator. All these decision
diagrams use a fixed total variable order. CFLOBDD is not in the table as it processes
variables via recursive bisection.

(Quantum) decision diagrams (and variants) Node merge

Decision Tree (no merging)

MTBDD (1993) [40], ADD (1997) [9], QuiDD (2003) [169] f = g

SLDD× (2004) [191], QMDD (2006) [111], XQDD (2008) [183], TDD (2021) [83] f = p · g
EVBDD (1994) [97], SLDD+ (2005) [62] f = g + a

FEVBDD (1994) [159, 160, 179], SLDD+,× (2005) [62], AADD (2005) [147] f = p · g + a

QDD (2006) [2] f = RX · g
LIMDD (2023) [176, 178, 177] f = p · P · g

Decision Diagrams in Quantum Circuit Compilation. Decision diagrams have
been pioneered for the efficient representation and manipulation of quantum
states by Viamontes in the form of QuiDDs [169], which are essentially ADDs
with a complex domain D = C. The basic insight is that a quantum state |φ⟩ can
be viewed as a pseudo-Boolean function fφ(x⃗) = ⟨x⃗|φ⟩, from computational basis
states x⃗ to complex amplitudes ⟨x⃗|φ⟩. QuiDDs have been used for simulation of
quantum computing [170, 169, 171].

QuiDDs were succeeded by QMDDs [111], which can be viewed as edge-
valued decision diagrams on the domain of complex numbers, transferring the
compactness of EVDD to the application of quantum circuit compilation. Here
it should be noted that the (pointwise) addition operation is required for the
implementation of the Hadamard gate, which can result in a possible blowup
of the diagram, which nonetheless does not exceed the size of the correspond-
ing QuiDDs, as discussed above for ADD and EVDD. The tractability of gate
implementations for QMDD is presented in [176, 177], showing that all other
primitive gate operations are tractable for QMDD, except for the swap gate.

QMDD has been applied to many quantum circuit compilation tasks: quan-
tum circuit simulation [199], equivalence checks [122, 33, 31, 32], including ap-
proximate equivalence checks [184], and synthesis [198, 123]. QMDDs have also
been used to simulate Hamiltonians [144, 80] and circuits with noise [73, 74, 72].

QDD [2] offers an interesting variation on QMDD, as Table 1 illustrates.
Further, while QMDD represents unitaries with quaternary DD nodes, TDD [83]
clones each qubit variable as was traditionally done [66, 106, 159].

Interestingly, certain families of stabilizer states yield an exponentially-sized
representation in QMDD as shown in [176]. This is surprising given the impor-
tance of stabilizer states and that simulation (and representation) of stabilizer
states is tractable as discussed in Section 2. LIMDD [176, 178] generalizes QMDD
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to solve this, reducing the required space in worst case from Ω(2
√
n) to O(n2) for

all stabilizer states. LIMDD achieves this feat by merging nodes that are equiv-
alent up to tensor products of single-qubit Pauli operators (as well as constant
complex factors, such as in QMDDs). Consequently, where a QMDD node has
decomposition |0⟩⊗α0 |φ0⟩+|1⟩⊗α1 |φ1⟩ pointing to a node φ0 (φ1) with the low
(high) edge which is labelled with complex number α0 (α1), a LIMDD replaces
the complex numbers α0, α1 by tensor products of Pauli matrices P = P1⊗...⊗Pn

times a complex number. An example is given in Figure 2, showing that some
nodes which could not be merged in QMDD are equivalent in LIMDD.

The price paid for its succinctness is however that LIMDD must compute the
stabilizer group for each node to achieve canonicity, causing cubic factor overhead
in practice [176]. Asymptotic analysis [177] also shows that computing fidelity is
also intractable for LIMDD (under common-place complexity-theoretic assump-
tions), while tractable in QMDD. However, Vinkhuijzen et al. [177] produced a
“knowledge compilation map” for quantum information (see Figure 3) showing
that only LIMDD can be more succinct than MPS and RBM (see Section 7).

Another type of decision diagram that is used for simulation is CFLOBDD.
This decision diagram fundamentally differs from the decision diagrams de-
scribed above, as it generalizes the linear variable order into a recursive bisection
of the variables (which can be viewed as a Shannon decomposition over multi-
ple variables at once): Every level recursively ‘peels off’ half of the variables
instead of one variable. This is why CFLOBDD does not fit in Table 1. More-
over, a CFLOBDD has variable sharing, such that a node representing a function
f(x1, ..., xk) can also be used for different variables like e.g. f(xk+1, ..., x2k). This

State space

poly-LIMDD

poly-MPS poly-RBM

poly-
QMDD

Stabilizer
states

Fig. 3. The comparative succinctness of LIMDD, QMDD, MPS, and RBM (see Sec-
tion 7) following from the asymptotic analysis in [177]. All these data structures, ex-
cept the stabilizer formalism, can represent any quantum state (they are universal).
The Venn diagram however shows families of states that can be represented in poly-
nomial size with the different data structures. Consequently, MPS, RBM, and LIMDD
are incomparable in terms of representation power: they each have their strengths and
weaknesses. LIMDD is the only structure that can represent all stabilizer states and
all (families of) states supported by polynomial QMDD. (Poly-)ADD and QuiDD are
not shown but are strictly contained in (Poly-)QMDD.
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recycling, combined with handling half of the variables in every level, results
in the best case in an exponential compression with respect to BDD. For in-
stance, the multi-qubit Hadamard matrix H⊗m which can be represented by
CFLOBDD in only logarithmic space. With these reductions, highly-structured
quantum circuits with very many qubits can be simulated efficiently [157, 156].
The treatment of multiple variables at a time aligns with SDD [51] and ‘hier-
archical set decision diagram’ [166], while the idea of variable shifting also was
used for SDD [118]. To our knowledge, there does not yet exist a “knowledge
compilation map” comparing CFLOBDD to other similar data structures.

In terms of performance, QMDD is usually among the fastest method for
compilation tasks, outperforming QuiDD [199], array-based methods [199, 82],
tensor networks [83, 157] (see Section 7) and ZX calculus (see Section 6) in
some cases [132]. Variants like QDD and TDD have related performance [2, 83],
while CFLOBDD was shown to be competitive to QMDD, SDD and tensor
network [157, 155]. LIMDD, finally, proved somewhat impractical in empirical
evaluation [178]. In practice, we therefore see QMDD used more, e.g. [34, 187].

There are multiple tools for the different types of decision diagrams for quan-
tum, e.g. [186, 188, 187, 155, 178, 197, 30, 82]. It should however be pointed out
that all of these use floating points by default to represent real weights on the
edges. In practice, this can cause rounding errors to rapidly propagate in the
discrete data structure, resulting in numerical instability [197, 124].

5 SAT/SMT-based Methods

While decision diagrams have been an indispensable data structure in many
automated reasoning applications, both within as well as outside of quantum
computing, they require (at worst) an exponential amount of space because
they represent all satisfying assignments. While many relevant problems are
known to be computationally hard in terms of time complexity, almost all of
them can be solved in polynomial space. Boolean satisfiability (SAT) is the
problem of deciding whether there exists a satisfying assignment to a given
Boolean formula, i.e., an assignment for which the formula evaluates to true,
i.e., is “satisfiable”. The SAT problem is the first problem that was shown to
be NP-complete [45]. Satisfiability modulo theories (SMT) generalizes SAT to
other domains than Boolean, such as expressions containing bit vectors, integers
or real numbers. SAT and SMT solvers are tools that tackle computationally
hard problems with polynomial-space algorithms [21]. It has become common
practice to solve other NP-complete problems by reducing them to SAT and then
using a highly optimized solver to solve the SAT instance, the solution of which
can then be translated back to the domain of the original problem. SAT-solving
algorithms such as DPLL [53] and CDCL [154] traverse the exponentially large
search space step-wise (thus taking only polynomial space omitting caches e.g.
learned clauses), and use clever pruning heuristics to obtain good performance
on many practical instances. Finally, model counting is the problem of counting
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the number of satisfying assignments of a Boolean formula and model counters
are tools for solving it [128, 145, 37].

SAT-based approaches have been used to tackle different types of quantum
circuit synthesis problems. While SMT allows for the encoding of problems with
a continuous search space [39, 12], in practice there tends to be a bias towards
discretizing the problem as explained in Section 3. In quantum circuit synthesis
and circuit optimization, we can identify two types of discrete problems to which
SAT-based methods have been applied: layout synthesis (i.e. taking an existing
circuit and remapping the qubits according to constraints) and the synthesis of
discrete circuits (such as Clifford circuits and transformations of so-called “graph
states”). We start with the use of SAT for simulation and equivalence checking.

Initial attempts have been made to harness the strengths of satisfiability
solvers for the simulation of quantum circuits. For instance, [17] implements
a simulator for Clifford circuits based on a SAT encoding. The authors also
discuss a SAT encoding for simulating universal circuits [17, 189] of exponential
size, making it impractical. Subsequently, [107] achieved the strong simulation of
universal quantum circuits by a linear encoding as a (weighted) model counting
problem. The crux of the method is a generalization of the stabilizer formalism
to universal quantum computing which effectively discretizes the state space.
Empirical evaluation shows that the method is competitive to state-of-the-art
methods based on DD and ZX calculus (see Section 6).

SAT-based solvers have also been used for the reversible simulation of irre-
versible (i.e. classical) circuits [190, 110], which is relevant for the construction
of space-efficient quantum oracles, e.g. for Grover’s algorithm [71] and quantum
backtracking algorithms [114, 142]. This was later improved by the spooky peb-
ble game [96], which is a model to trade off classical and quantum space. Using
SAT solvers, the spooky pebble game has been used to study trade-offs between
classical space, quantum space, and circuit depth of a computation, optimizing
quantum circuits within hardware constraints [139, 140]. SAT has also been used
for equivalence checking of Clifford circuits, using the stabilizer formalism [17],
though the problem is in P [165]. For universal quantum circuits, equivalence
checking can be achieved via a Turing reduction to model counting, as proved
by [108] based on the simulation through model counting approach mentioned
above [107] and an equivalence checking approach [165].

Clifford circuit synthesis deals with the problem of finding a Clifford circuit,
which, from the |0...0⟩ state, generates a particular target stabilizer state (a form
of state preparation). SAT-based methods have been applied to this problem,
both with additional optimality constraints [148, 57, 102, 116, 153, 55, 125] and
without [17]. The work [148] uses both a MaxSAT solver [21] and a regular SAT
solver in combination with binary search. Additional constraints (such as search-
ing for the shortest circuit) are important because without these, the problem
is known to be in P [1]. And while SAT solvers are good at hard problems, they
are impractical for tractable problems, as demonstrated in [165].

A different application of SAT solvers has been in optimal layout synthesis,
where swap operations are inserted into the circuit to ensure that multi-qubit
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gates are only executed on connected physical qubits. Minimizing the number of
swaps is NP-hard [105] and thus the problem was tackled with SMT [161, 27, 75]
and MaxSAT-based methods [112].

Related is the synthesis of circuits that transform one “graph state” into
another using only single-qubit operations. Graph states are a special type
of stabilizer states that play a crucial role in quantum networking as well as
measurement-based quantum computing [141, 78]. An n-qubit graph state is a
quantum state that can be described by an undirected graph G = (V,E) with n
vertices V and edges E ⊆ V × V . Intuitively, the edges of the graph capture in-
formation about the way the qubits (corresponding to vertices in the graph) are
entangled. Formally, a graph state |G⟩ is the state (

∏
(v,w)∈E CZ v,w)H

⊗n |0...0⟩,
where CZ v,w is a two qubit quantum gate equal to HwCNOTv,wHw.

An important property of graph states is that several important operations,
i.e. single- and two-qubit Clifford gates and single-qubit standard measurements,
can be expressed in terms of graph transformations. This allows for reasoning
about transformations of graph states entirely in terms of transformations of
graphs. A recurring problem [50, 77, 87] is finding transformations between graph
states using only local (i.e. single-qubit) operations, a problem which is NP-
complete in general [49]. By reducing the problem to SAT, this problem has
been successfully solved up to 17 qubits [26].

6 Graphical Calculus-based Methods

Another notable technique for quantum circuit compilation is the use of graphical
calculi. These techniques consist of using a set of composable graphical gener-
ators that interact and can be rewritten via a set of equations. In recent years
there have been many proposals for representing quantum systems as graph-
ical languages. For example, there exist graphical languages with a focus on
linear optical circuits [42, 79, 64], fermionic quantum systems [54], open quan-
tum systems [194], Gaussian pure states [109], qudits [101], and more general
systems [44, 18]. Even more so, there has recently been a diagrammatic axiomati-
zation of quantum circuits [41]. Still, the most prominent graphical language for
quantum circuit compilation is the ZX-calculus [43], (the focus of this section)
and its multiple variations and extensions [7, 76, 136, 181, 173].

Initially developed by Coecke and Duncan [43], the ZX-calculus is a graph-
ical language used for reasoning about quantum systems and quantum com-
putations. Inspired by Penrose’s tensor network notation [134] and graphical
languages stemming from category theory [150], ZX-diagrams consist of a set
of graphical generators that semantically represent linear maps f : C2n → C2m

between Hilbert spaces. We can compose these generators both sequentially and
parallelly (corresponding to multiplication and Kronecker product of the linear
maps they represent, respectively) to create more complex quantum systems. In
fact, ZX-diagrams are universal in the sense that they can represent any linear
map between qubit Hilbert spaces, not necessarily limited to quantum operations
(and interestingly, it was shown in [175] how to do a conversion between QMDDs
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and ZH-diagrams, which in turn can be converted into ZX-diagrams). This makes
ZX-diagrams more flexible than standard circuit notation. ZX-diagrams are also
equipped with a set of rewrite rules, forming the ZX-calculus. These rewrite
rules identify semantical identities between diagrams, and they are the basis
for ZX-calculus-based algorithms, for which we are going to give an overview
now. Figure 4 shows an example correspondence between a quantum circuit and
equivalent ZX-diagram (up to scalar factor).

π+

|0⟩

|0⟩
→

H

X

Fig. 4. A quantum circuit and corresponding ZX-diagram.

When it comes to simulation of quantum circuits with ZX-calculus, most
approaches [92, 95, 93, 35] opt for calculating individual amplitudes of the state
vector using variations of the following set of steps. We start with a quantum
circuit consisting of an input state, a sequence of gates, and an effect ⟨x| that
we turn into a ZX-diagram. By applying some specific rewrite rules, we turn
our diagram into a graph-like ZX-diagram [59]. We then contract the resulting
diagram via a specific set of rewrite rules that strictly decrease the number of
nodes (to ensure termination), and then split the reduced diagram into smaller
ones by identifying sub-diagrams where we can apply a stabilizer decomposition.
This results in a linear combination of ZX-diagrams that can be recursively sim-
plified by again contracting and decomposing each diagram, resulting in a linear
combination of smaller ZX-diagrams that we then semantically translate to cal-
culate the resulting amplitude. Adjacent to the simulation of quantum circuits,
recent techniques allow for differentiation and integration of ZX-diagrams with
applications in quantum machine learning [167, 182, 85].

When the task is optimizing a circuit with ZX-calculus [158, 13, 81, 91, 90], we
also proceed by translating the input circuit into a ZX-diagram, then to a graph-
like diagram, followed by similar simplification rules until termination, and then
extracting a circuit from the resulting simplified diagram. Since ZX-diagrams are
more general than quantum circuits, the process of extracting a circuit from a
unitary ZX-diagram is #P-hard [14]. Fortunately, there are sufficient conditions
that have been identified for circuit extraction to be done efficiently [8, 59,
185, 60]. These are graph-theoretical flow conditions on the diagrams ensuring
that a circuit can be extracted step-wise from them. The aforementioned circuit
optimization technique can be augmented for quantum-classical circuits (i.e.
quantum circuits that can interact with classical circuits) [23] for an extension
of the ZX-calculus that allows the discarding of quantum systems [36].

When it comes to circuit synthesis (and also very much related to circuit
optimization), most works revolve around Pauli exponentials [47, 185]. Expo-
nentiated Paulis are operations of the form e−iαP1⊗P2⊗...⊗Pn and arise naturally
when performing quantum chemistry simulations [47]. These operations have a
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compact representation as ZX-diagrams (referred to as Pauli gadgets) and their
interactions (e.g. commutation rules between themselves and other quantum
gates) can be intuitively reasoned about as ZX-diagram rewrite rules. Given a
computation in the form of a composition of Pauli exponentials, the task of ZX-
calculus based synthesis aims for a succinct representation of these operations in
the form of a sequence of gates (that is, a circuit-like ZX-diagram), oftentimes
taking into account device constraints such as qubit connectivity when choosing
the layout of multi-qubit gates [192, 48, 70, 68].

Lastly, we want to mention the task of circuit equivalence checking using
ZX-calculus. As a language, the ZX-calculus is complete in the sense that there
are sets of rewrite rules [174] that can provably transform any two semantically
equivalent ZX-diagrams into one another. This does not mean that the proce-
dure to do so (e.g., via normal forms) is optimal, so for equivalence a different
approach [91, 131, 90, 133] exists: Given two quantum circuits U,U ′ (in the form
of ZX-diagrams), composing one with the dagger of the other in order to ver-
ify U†U ′ = I (up to global phase). This would mean that after reducing the
composed circuits we should arrive to the identity diagram, which is a collec-
tion of bare wires. The simplification algorithm [91] also boils down to turning
a diagram to graph-like form and applying strictly reducing rewrites until no
more nodes can be simplified. It was shown in [131] that this technique does not
arrive to the identity diagram on certain (desirable) cases, such as when the two
circuits differ by small errors or when one of them uses an ancillary qubit.

7 Other Quantum Circuit Compilation Methods

Without the intention to be complete, we present other important automated
tools used in quantum circuit compilation in this section.

Bisimulation has been used in computer science for inter alia process anal-
ysis [146] but can also be used in quantum simulation. This line of research
was introduced by Jimenez et al. [86], showing that this technique complements
quantum simulation methods with decision diagrams.

Shaik and van der Pol [151] tackled circuit topology optimization with mod-
ern planning tools. Interestingly, the resulting optimizer is shown to outperform
methods based on satisfiability. Venturelli et al. [168] also use planning and con-
straint programming to realize a quantum circuit optimization tool.

Quantum circuit optimization problems have also been solved with (mixed
integer) linear programming. The tackled problems include finding optimal quan-
tum circuits under restrictions on the topology (qubit connectivity) [119, 180]
or under restrictions on the gate set [117, 11].

Finally, tensor networks are used in physics for simulation of physical quan-
tum systems [194, 127] and have found various applications in quantum com-
puting [172, 129, 149]. Tensor networks represent quantum information and op-
erations in similar way as graph calculi (see Section 6). In fact, ZX-diagrams
are tensor networks [185], but with an additional set of rewrite rules to find
simplification strategies or to carry out proofs in purely diagrammatic form. A
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matrix product states (MPS) [135] is a linear tensor network with a variable
order much like in decision diagrams (see Section 4). In fact, Vinkhuijzen et
al. [177] found that MPS can polynomially simulate EVDD (QMDD), but not
vice versa. Like quantum circuits [61, 15], tensor networks have also been used
in machine learning [143]. A historical overview can be found in [126].

Finally, we point out that tensor networks are used in similar ways as de-
cision diagrams and satisfiability. In formal verification, for instance, sets of
states and transitions are represented in DD, before fixpoints are computed us-
ing matrix-vector operations [106, 66, 25, 56]. Tensor networks also treat single
quantum states and operations that way (see MPS and MPO [127]). Similarly,
the SAT-based approaches identified in Section 5 essentially use a bounded model
checking [20] encoding of circuits. Moreover, in knowledge compilation in AI, in-
formation is first compiled in a succinct representation before analyzing it using
queries, which is how tensor networks are also used in physics [126].

8 Conclusion

This survey found various types of decision diagram-, SAT- and graph-calculus-
based approaches are used extensively in quantum circuit compilation. The result
illustrates how quantum circuit compilation benefited from automated reason-
ing techniques originally developed for reasoning about classical systems. Per-
haps surprising, is that not only universal quantum simulation has been effi-
ciently handled with decision diagrams, model counting and ZX-calculus-based
approaches, but also harder problems like (universal) equivalence checking. In
fact, together these methods make up the state-of-the-art in quantum circuit
simulation, often with different performance characteristics (e.g., model count-
ing can be slower than decision diagrams on structured circuits but better on
more unstructured circuits, while ZX-calculus can sometimes outperform both
methods). Similarly, optimization and synthesis tasks have been shown to be
solvable with DD, SAT/SMT and ZX-calculus for non-universal cases (e.g., for
Clifford circuits) and for universal circuits, which are however mostly handled
with heuristic approaches. In the latter case, ZX-calculus seems to excel.

From these successes, and recent progress in this direction [144, 80], we
conclude that ‘classical’ automated reasoning tools will likely come to play a
larger role in other quantum computing and physics applications, such as finding
ground states, phase transitions and quantum error correction, where currently
methods like tensor networks are often applied.
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