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Abstract. The external memory BDD package Adiar can manipulate
Binary Decision Diagrams (BDDs) larger than the RAM of the machine.
To do so, it uses one or more priority queues to defer processing each
recursion until the relevant nodes are encountered in a sequential scan.

We outline how to improve the performance of Adiar’s algorithms if the
BDD width of one of its inputs is small enough to fit into main memory. In
this case, one of the algorithms’ priority queues can entirely be replaced
with (levelised) random access to the nodes of the narrow BDD. This
preserves the I/O efficiency of the original algorithm, is applicable to
other types of decision diagrams, and significantly improves performance
for many larger BDD computations.
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1 Introduction

Based on the work of Lars Arge [4, 5], Adiar1 [24] is an implementation of Bi-
nary Decision Diagrams (BDD) [7] capable of handling BDDs larger than the
machine’s random access memory (RAM). To achieve this, it uses time-forward
processing [3, 8, 15] to replace the conventional depth-first recursion stack with
one (or more) priority queue(s) that are synchronised with a sequential iteration
through the input BDD(s).

The high performance of conventional BDD implementations is the result
of several decades of research. Especially the unique node table and its layout
has been vital [12, 14, 16, 19]. Yet, these and other ideas are not applicable to
time-forward processing. Hence, new ideas are needed to make Adiar achieve a
satisfactory performance. This has motivated the introduction of its levelised pri-
ority queue [23], its equality checking algorithm [24], and the concept of levelised
cuts [21]. Common to all these optimisations is the use of some meta information
about the BDD graph to substantially improve performance.

Adiar’s performance was evaluated [22, 24] on various combinatorial bench-
marks. Each of these benchmarks accumulates a set of constraints, each of which
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is a very narrow BDD, into one BDD whose size quickly grows large. Certain
instances of symbolic model checking or symbolic SCC computation are quite
similar. Here, the BDDs that represent transition relations in deterministic fi-
nite automata [9, 11] or in asynchronous models of concurrency [10], e.g. Petri
Nets [13,18], are narrow while the one for the accumulated state space is large.

1.1 Contributions

In the same vein as the prior optimisations in [21, 24], we show in Section 3
how Adiar can exploit the width of the input BDDs (defined in Section 2). In
this case, the product construction algorithm in [24] can omit the use of one
of its priority queues in favour of per-level using random access directly on the
narrow BDD. Our experiments in Section 4 show that this considerably improves
performance for the larger instances of both the motivating use case, i.e. when
computing on at least one narrow BDD, and also average use cases.

1.2 Related Work

Prior to this work, levelised cuts [21] improves Adiar’s performance by soundly
upper bounding the size of its priority queues. If it is smaller than main memory,
then the external memory priority queue is replaced by a simpler and faster
priority queue that only works in internal memory. This has been vital for Adiar’s
performance on BDDs that do fit into the RAM. In this work, we instead improve
Adiar’s performance by changing the algorithms’ logic. Hence, in constrast to the
prior work, this optimisation targets the entire spectrum of BDDs. It especially
is of benefit to some larger instances.

CAL [20] (based on [6, 17]) is to the best of our knowledge the only other
BDD package to compute on BDDs that exceed main memory. To do so, it stores
all BDD nodes in a unique node table and uses queues to execute its algorithms
in the breadth-first manner. These node tables and queues can be offloaded to
the disk via the operating system’s swap memory. Yet, this is only efficient, if
every level fits into memory. In general, CAL is not I/O-efficient [5], whereas
Adiar is [24].

2 Preliminaries

2.1 I/O Model

Aggarwal and Vitter [1] designed the I/O-model to analyse the data transfers
between two levels of a memory hierarchy. Here, the internal memory, e.g. the
RAM, has a finite size of M and data exceeding its capacity needs to be trans-
ferred in blocks of size B to/from the external memory, e.g. the Disk.

The number of block data transfers (I/Os) needed to sequentially read and
write N amounts of data is scan(N) ≜ N/B. To sort N amounts of data one
needs to use sort(N) ≜ N/B · logM/B(N/B) I/Os. Furthermore, one can also
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Fig. 1: Examples of Reduced and Ordered Binary Decision Diagrams. Terminals
are drawn as boxes while internal nodes are drawn as circles with its decision
variable. The then and else edges are respectively drawn solid and dashed.

design a priority queue capable of inserting and extracting N elements in the
optimal Θ(sort(N)) number of I/Os [3]. For all realistic values of N , M , and B,
both scan(N) and sort(N) are several magnitudes smaller than N itself.

2.2 Binary Decision Diagrams

Binary Decision Diagrams (BDD) [7] provide a concise representation of Boolean
functions Bn → B as a singly-rooted directed acyclic graph (DAG). As shown
in Fig. 1, a BDD has two terminals with the Boolean values B = {⊥,⊤} as
the function’s output whereas each internal BDD node provides an if-then-else
decision on one of the n input variables, xi.

What are colloquially referred to as BDDs are in fact Reduced and Ordered
BDDs (ROBDDs). A BDD is ordered if the decision variables only occur once on
each path from the root to a terminal and always following the same order. This
induces a levelisation with level xi only containing nodes with the said variable.
The width of a BDD is the size of its largest level. A BDD is reduced, if there
are (1) no duplicate nodes and (2) no redundant nodes. A node is a duplicate if
it represents the same if-then-else. In conventional BDDs, a node is redundant
if it has two identical children.

Fundamental to BDDs is the Apply operation, which, given BDDs f and
g and a binary operator ⊙, constructs the BDD for f ⊙ g. This is done via a
product construction of both input BDDs and applying ⊙ when arriving at a
pair of terminals. As an example, Fig. 2 shows the product of Fig. 1a and 1b.

Here, we only provide a high-level description of Adiar’s Apply algorithm
that includes the details needed for Section 3; we refer to [24] for a detailed ex-
planation. To make it I/O-efficient, Adiar imposes a total order on its BDD nodes
such that the BDD is sorted level by level. Specifically, each node is associated
with a numeric time point that they are encountered in the input (grey indices
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Fig. 2: Product Graph for BDDs in Fig. 1a and Fig. 1b.

in Fig. 1). This ensures that each BDD node will always come after its parent
during a sequential scan. To identify the pair of children of (nf , ng) ∈ f × g in a
product construction, the ordering implies one needs the first to-be seen node,
min(nf , ng), and possibly also the second one, max(nf , ng). Hence, a priority
queue can make the recursion to target (nf , ng) match the sequential scan of the
inputs by sorting it on the time point min(nf , ng). If max(nf , ng) is also needed
then the BDD node min(nf , ng) is further forwarded to max(nf , ng) with a sec-
ond priority queue. To do so, the second priority queue sorts its elements on
the time point max(nf , ng). To guarantee a polynomial running time, recursions
to the same target are grouped together. This is done by resolving ties in both
priority queues’ ordering via a lexicographical ordering of the recursion targets.
For example, the product graph of the BDDs in Fig. 1a and Fig. 1b is resolved
in [24] in the order depicted in Fig. 2.

This Apply algorithm only uses O(scan(Nf )+scan(Ng)+sort(T )) I/Os unlike
the O(T ) I/Os used by conventional recursive implementations [5, 12], where
Nf , Ng are the number of internal BDD nodes in f and g, respectively, and T is
the number of BDD nodes in the output.

3 Using Random Access for Narrow Decision Diagrams

Without loss of generality, assume that the second input, g, to the Apply oper-
ation is narrow, i.e. the width of g is smaller than some threshold θ < M/2. In
this case, we can completely omit the second priority queue.

To do so, when processing level xi, we load all BDD nodes of g at level xi from
external memory. This provides immediate random access to the entire level xi

of g. Hence, the second priority queue can be omitted if the ordering of the first
priority queue is changed accordingly. Specifically, the first priority queue now
solely has to respect the levels of the recursive calls and synchronise them with
the sequential scan through f . Hence, the recursion target (nf , ng) should first
be sorted on its level to not miss any requests where the level of nf is below
the one of ng. Secondly, it is sorted lexicographically to respect the sequential
scan through f . Futhermore, lexicographical sorting also groups recursive calls
for the same target together, which preserves the polynomial running time and
I/Os.
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Doing so only affects the order in which all recursions are resolved; the output
is still isomorphic to what is produced by the algorithm in [24]. For example in
Fig. 2, if random access is used on the BDD from Fig. 1b then (4, 6) is resolved
prior to (5, 5). In the previous algorithm [24], both the node at time point 4 in
Fig 1a and the one at 6 in Fig. 1b had to be visited in-order to resolve the product
(4, 6); hence, this product was resolved after (5, 5). Instead, with random access
the node at time point 6 in Fig. 1b is immediately available when reading the
one at 4 in Fig. 1a; hence, (4, 6) is resolved before (5, 5).

Proposition 1. The Apply algorithm with random access on a narrow BDD
saves O(sort(T )) I/Os in comparison to the prior algorithm from [24].

Proof. Since the input BDDs are already sorted based on their level, loading the
levels of g top-down is possible in a single sequential scan. Yet, the algorithm in
[24] also needs to scan through g. Hence, loading the nodes of g for random access
does not cost any additional I/Os. Yet, it completely removes the O(sort(T ))
I/Os incured by the second priority queue.

Note that this is only a constant improvement over the algorithm in [24].
Furthermore, it is only an O(sort(T )) rather than a Θ(sort(T )) improvement,
since recursion requests do not necessarily need to be moved into the second
priority queue.

4 Experimental Evaluation

We have implemented the modified algorithm of Section 3 and run the bench-
marks from [22, 24] with threshold θ = 0, B (2 MiB), and ∞. Using θ = 0
essentially turns the random access optimisation off and provides a baseline. On
the other hand, using θ = ∞ entirely replaces the previous Apply algorithm.
Finally, θ = B provides a small value which covers the motivating use cases
while also leaving more of the internal memory to the remaining priority queue.

The benchmarks of [22,24] consist of two categories. First, the Combinatorial
Counting problems, e.g. the Queens problem, primarily involve the accumulation
of lots of narrow decision diagrams. On the other hand, the EPFL [2] Circuit
Verification provides a typical use case for decision diagrams.

As in [21,22,24], we have run all experiments on the CSCAA Grendel cluster
where Adiar is initialised with M = 300 GiB. For each value of θ and each
benchmark instance, the running time has been measured between 3 and 15 times
(11.2 times on average) depending on its expected running time. We consider a
measurement to be significant if the difference between the mean running time
of θ = 0 and θ = B,∞ is larger than twice their largest standard deviation.
Figure 3 shows the speed-up in the mean running time for all 113 benchmark
instances. Table 1 provides a summary of all significant instances.

Both θ = B and θ = ∞ provide a significant performance increase in perfor-
mance for the larger combinatorial benchmarks compared to the θ = 0 baseline.
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(b) EPFL [2] Circuit Verification

Fig. 3: Speed-up in running time with θ = B and θ = ∞ relative to θ = 0
(higher is better). Statistically significant measurements have a black border.

Of the 64 combinatorial instances, 14 (21.9% of all of these instances) had a sig-
nificant improvement of 15.4% on average for θ = B and 16.3% for θ = ∞. These
14 instances all require 10 s or more to solve with θ = 0. In total, 26 out of the
total 64 instances required this amount of time to solve. That is, performance
improved for 53.8% of these larger instances.

Similarly to the combinatorial benchmarks, EPFL Verification also gains
significant improvements for many of its larger instances. Only one circuit,
int2float, requires significantly more time to verify. Yet, while a decrease in
performance of 67% seems worrisome, it is only an increase in the computation
time from 0.74 s to 1.12 s.

Finally, the optimisation presented in this work further closes the gap be-
tween Adiar and conventional BDD packages. For example, CUDD [26] can solve
up to the 15-Queens problem with BDDs. In [24] the gap between Adiar and
CUDD for this problem’s instance was a factor of 1.42. In [21], this was im-
proved to 1.26. With θ = B,∞, the gap is now further decreased down to 1.07.

Table 1: Speed-up (△) and slowdown (▽) of θ = B and θ = ∞ for Combinatorial
Counting (CC) and EPFL [2] Circuit Verification (EPFL) benchmarks.

# Significant Instances Average Relative Difference
△ ▽ △ ▽

CC
θ = B 14 (21.9%) 3 (4.7%) 15.4% -6.7%
θ = ∞ 14 (21.9%) 3 (4.7%) 16.3% -6.7%

EPFL
θ = B 6 (12.2%) 0 (0.0%) 25.1% –
θ = ∞ 6 (12.2%) 1 (2.0%) 26.9% -66.8%
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Simultaneously, this also improves performance for instances not solvable with
CUDD. For example, it improves the solving time of 16-Queens by 19.2%.

5 Conclusion

Let a BDD be narrow if its width is smaller than some threshold θ < M/2,
where M is the amount of internal memory. Specifically, each individual level of
a narrow BDD fits into internal memory. Hence, one can load each of its levels in
their entirety and do random access on it. If some input to the Apply algorithm
in [24] is narrow then one does not need to synchronise its computation with
the sequential order of the narrow one. In this work, we have sketched how this
algorithm can be adapted to this case, to save on computation time and I/Os.

For θ = B (B is the block transfer size), our experiments show a significant
improvement in performance for larger instances. In the motivating use case with
lots of narrow BDDs, performance increased significantly by 11.8% on average.
In the average use case, performance even increased significantly by 25.1%.

Relative to θ = B, our results with an unlimited θ further improves per-
formance significantly for 3 larger combinatorial instances. No instances slowed
down significantly. Hence, we have implemented levelised random access as part
of Adiar 2.0 and based on the observation above, we use a large θ of M/8.

5.1 Future Work

While using levelised cuts [21] improves Adiar’s performance for algorithms
whose priority queues fit into RAM, it still leaves a gap between the running
time of Adiar and conventional BDD packages for the smallest problems.

To efficiently solve the smallest of BDD instances (15 MiB or smaller), the
BDD package CAL [20] switches from its breadth-first approach to the conven-
tional depth-first algorithms.

The work presented in this paper can be extended to compute on input BDDs
that are stored in an (internal memory) unique node table. Its (unreduced) out-
put, which may exceed main memory, is still stored on the disk. Conversely, one
can change Adiar’s algorithms to place the final (reduced) BDD back in the node
table. Hence, this work provides the basis for an efficient and seamless transition
between a conventional depth-first approach and Adiar’s external memory algo-
rithms. This will be the final step to make Adiar competitive across the entire
spectrum of BDDs.

Furthermore, this work applies to all of Adiar’s product construction opera-
tions, such as variable quantification. Hence, this work, together with [21], is vital
for the design of an I/O-efficient relational product that is usable in practice.

Acknowledgements Thanks to the Centre for Scientific Computing, Aarhus,
(phys.au.dk/forskning/cscaa/) for access to the Grendel cluster.

Data Availability Statement. The data presented in Section 4 is available
at [25] while the code to run the benchmarks can be found at [27].
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