
Learning the State Machine Behind a Modal
Text Editor: The (Neo)Vim Case Study

Pierre Ganty[0000−0002−3625−6003]

IMDEA Software Institute, Madrid, Spain
pierre.ganty@imdea.org

Abstract. We use active automata-based learning to extract the state
machine underlying the modal text editor Vim. We expose the various
challenges to interface an active learning library with the text editor.
Furthermore, we report on how we uncovered several issues and how
they were dealt with by the (Neo)Vim developers. Finally, we reflect on
the possible uses of automatically extracted finite-state machines beyond
bug reports.

Keywords: Active Learning, Moore machine, Modal text editor

1 Introduction

Modal text editors such as Vim support multiple editing modes. Depending on
the mode, typed characters are interpreted either as sequences of commands or
are inserted as text. Fig. 1 depicts part of the modes (normal, visual, insert,
. . .) and how the keystrokes (esc , ctrl + v , i , . . .) transition between them.

s0

normal

s1

visual

s2

command line

s3

insert

ctrl+v:

i esc

escesc

i

Fig. 1. Four Vim modes and examples of keystrokes to move between them. In insert

mode, the text you type is inserted into the buffer (i.e. the in-memory text of a file).
visual mode enables the selection of a piece of text via keystrokes. In command line

mode, you can enter one line of text, typically commands, at the bottom of the window.
In normal mode, the typed keys are interpreted as editor commands to be applied to
the text in the buffer.

2 P. Ganty

We report on our experience of using a library for automata-based active
learning where the system under learning is Vim. Our main hypothesis is that
modal text editors implement a finite-state machine (such as Fig. 1) that can be
extracted automatically using active learning automata-based techniques.

Our motivation is twofold: we want to expose (1) active learning automata-
based techniques to real-world systems like the Vim text editor and; (2) software
developers to automata-like artifacts produced by active learning techniques.

Incidentally, we want to understand how active learning techniques can con-
tribute to software development.

In our endeavor we faced several challenges. A first technical challenge asks
which active learning library to interface with Vim and how. There exists several
well-maintained publicly available libraries such as learnLib and LibAlf. (See the
Automata Wiki [13] for an exhaustive list.) A second challenge is the scalability
of the active learning techniques. What to do if the finite-state machine to be
computed is too large or even infinite? We took for granted that the state ma-
chine underlying the Vim editor had finitely many states, but we quickly realized
that in general the finiteness assumption is not true.

In this paper, we solve the interface between an active automata learning
library (AALpy) and the Vim text editor (actually, we used the Vim fork called
Neovim). We explain how to control the scalability of the active learning process,
both via AALpy and the Neovim editor itself. We submitted bugs to the Vim
and Neovim developers and report on our interactions, including whether the
bugs were acknowledged or not and whether they were fixed.

Based on our experience, we will discuss the lessons learned and possible
future work going beyond modal text editors.

2 Preliminaries

(Neo)Vim. We used the Vim1 text editor for this case study. First and fore-
most, we used Vim because there are several reports of a state machine under-
lying its modal capabilities (see, for instance, Vim’s Wikipedia page2 or Darcy
Parker’s Vim Modes Transition Diagram [19]). Second, Vim is a rather large
piece of software, mostly written in C. It implements a highly configurable text
editor with a rich set of features. At least a dozen books3 about Vim are available.
Vim has a large user base (see for instance this survey,4 where Vim came fifth as
the most popular “Integrated development environment”). Vim also has a long
history of over 40 years of development [20]. For the above reasons, we claim that
it is a battle-tested software. It is also worth pointing that its documentation5

is well-maintained.

1 https://www.vim.org/
2 https://en.wikipedia.org/wiki/Vim (text editor)#Modes
3 https://iccf-holland.org/vim books.html
4 https://survey.stackoverflow.co/2022/#section-most-popular-technologies-integrated-development-environment
5 Available via the :help command of Vim or via dedicated websites on the Internet.

https://www.vim.org/
https://en.wikipedia.org/wiki/Vim_(text_editor)#Modes
https://iccf-holland.org/vim_books.html
https://survey.stackoverflow.co/2022/#section-most-popular-technologies-integrated-development-environment

Active Learning of a Modal Text Editor 3

We use a fork of Vim called Neovim6 because of its remote Python API
(pynvim7). Neovim shares a lot of its source code with Vim, in particular the
core functionality of the editor. Consequently, it is often the case that bugs
reported to Neovim are deferred to the Vim developers, who publish patches
fixing the issue which are then ported to the Neovim code base by the Neovim
developers. The two projects have developers in common.

AALpy. AALpy [17] is a light-weight active automata learning library written
in Python. AALpy supports a wide range of modeling formalisms, including
Moore machine, which we use as the formal model for the modes transition
diagrams of the Vim editor. Indeed, Moore machines are finite-state machines
like that of Fig. 1 where transitions between states are labeled by the so-called
“input” symbols while states carry “output” symbols. In relationship to Vim,
we have that the input symbols corresponds to the typed characters (that is,
the keystrokes) while the output symbols corresponds to the modes reported by
Vim (e.g. INSERT mode in Fig. 2).

Fig. 2. Screenshot of Neovim running inside a terminal.

A (deterministic) Moore machine is a 6-tuple (S, s0, Σ,O, δ,G), where: S is
a finite set of states including an initial state s0; Σ is a nonempty finite set
called the input alphabet, O is a nonempty finite set called the output alphabet ;
δ : S × Σ → S is a transition function mapping a state and the input alphabet
to the next state; and G : S → O is an output function mapping each state to
the output alphabet.

Fig. 1 gives an example of Moore machine with states {s0, s1, s2, s3}; input
alphabet given by : , esc , ctrl + v , i ; and output alphabet comprising
command line, normal, visual and insert.

6 https://neovim.io/
7 https://github.com/neovim/pynvim

https://neovim.io/
https://github.com/neovim/pynvim

4 P. Ganty

In AALpy, active learning of Moore machines is a fully automated process
following a paradigm called minimally adequate teacher (MAT) initially put
forward by Angluin [14]. In our setting, the MAT interacts in rounds with a
learner whose task is to compute a Moore machine. The learner asks the teacher
Neovim related queries that fall into two categories: (1) membership queries
asking the teacher to return the output of a sequence of keystrokes applied to a
newly spawned Neovim process; and (2) equivalence queries asking the teacher
whether a Moore machine coincides with the state machine underlying Neovim.
In AALpy, equivalence queries can be approximated via conformance testing
strategies, which performs multiple membership-like queries comparing the out-
put of the Moore machine with that of Neovim when applied the same sequence
of keystrokes. For more details, we refer the interested reader to the survey of
Vaandrager [24] who also provides an exhaustive list of references on the sub-
ject as well as the AALpy website8 for implementation specific details. In recent
years, active learning automata-based techniques have been used successfully
on real-world system ranging from virtual private network servers to recurrent
neural networks and Bluetooth Low Energy protocols [23,18,21,22].

3 Active Learning of Neovim Moore Machine

Interfacing Neovim and AALpy. AALpy interacts with Neovim via its re-
mote API pynvim9. One design goal of pynvim is to provide a library for con-
necting to and scripting Neovim processes, which is the feature we use in this
paper. AALpy requires implementing a step function as well as a pre and a post
function. The pre and post functions have to do with initialization/startup of a
Neovim process and graceful shutdown of the Neovim process/memory cleanup.
For the shutdown, we close the Neovim sub-process and for the initialization
we spawn a new “child” process as shown at the top of Fig. 2. The step func-
tion submits to the Neovim process the next keystroke and returns the updated
mode resulting from the keystroke by invoking nvim_get_mode()10. The set of
keystrokes to be used by AALpy is configurable and, in our latest version of the
interface [3], we set it to: { l , ctrl + g , 0 , ctrl + v , c , : , v , g ,
ctrl + o , r , esc , , ctrl + c , ctrl + \ + ctrl + n }.

Scaling up. Generally the larger the set of keystrokes the more time AALpy
needs before returning a Moore machine, and therefore we have to select the
keystrokes carefully. Indeed, when AALpy adds a state to the Moore machine, it
also adds transitions (one per keystroke) leaving that state. Hence, when AALpy
returns a Moore machine with 100 states for a set of, say, 15 keystrokes, we know
immediately the machine has 1,500 transitions. We settled on the previous set of
keystrokes because it allows visiting many modes: : enters the command line

8 https://github.com/DES-Lab/AALpy
9 https://github.com/neovim/pynvim

10 https://neovim.io/doc/user/api.html#nvim get mode()

https://github.com/DES-Lab/AALpy
https://github.com/neovim/pynvim
https://neovim.io/doc/user/api.html#nvim_get_mode()

Active Learning of a Modal Text Editor 5

mode, l followed by c the insert mode while also covering operator pending
and motions, ctrl + v the visual mode,. . .

Apart from the keystrokes, an independent way to control scalability of the
learning process is to customize the Neovim process. Roughly speaking, different
settings of Neovim yield different Moore machines. In general, the machine is
not even finite, since the result of some keystrokes depends on the previously in-
serted text inside Neovim. For instance, an editor command in normal mode, like
c f z , deletes the text between the cursor position and the next occurrence

of the symbol z on the same line of text, after which it completes by entering
the insert mode. (c is for change, f is for forward and z is the symbol looked
for). However, if z does not occur between the cursor and the end of the line,
then no text is deleted and the editor command completes by staying in normal
mode.11 Because the size of the text being edited is virtually unbounded, the
learner is therefore facing the task to compute a Moore machine with infinitely
many states. But there is more, assuming we can make the machine finite it can
still be very large: the result of the keystrokes ctrl + i and ctrl + o depends
on the so-called ‘jumplist’ which counts up to 100 entries.

To remedy this problem, we configure Neovim to prevent the behaviors de-
scribed above to happen. More precisely, we use options controlling Neovim’s
behavior as well as key mapping which we set after spawning the Neovim sub-
process. As shown in Fig. 2, we map the keystrokes ctrl + i and ctrl + o to
do “nothing” when we are in normal mode to avoid the pitfall of the jumplist
mentioned above.

Finally, let us mention that we commented out in the Neovim source code all
function calls causing time delays as suggested by developers [6]. These delays
are present in the source code to give the user the time needed to read some
messages. However, those delays slow down the active learning process.

Current State of the Learning. Using the above set of 14 keystrokes and
a customized Neovim as described above AALpy learns a Moore machine of 99
states and 1,386(=14 × 99) transitions after 58 rounds between the learner and
the teacher in less than 10 minutes by performing 31,479 memberships queries
29,700 of which (or 94%) are carried out in the context of the conformance
testing to approximate equivalence queries.

4 Outcomes and Impact

After successfully learning a Moore machine, we set AALpy to produce a file
in the dot language of the Graphviz project [16]. The dot language allows for
visual inspection of the Moore machine as well as running queries on it using
some external tool supporting the dot language format. Our typical workflow
has been to first manually inspect the computed Moore machine using a dot
file visualization tool (xdot.py12) and then formulate queries (e.g. How to reach

11 See [12] for a more detailed explanation.
12 https://github.com/jrfonseca/xdot.py

https://github.com/jrfonseca/xdot.py

6 P. Ganty

Fig. 3. Detail of a Moore machine learned using our approach.

that state? What differentiates these two states?. . .) to be answered either di-
rectly within AALpy (e.g. compare_automata, find_distinguishing_seq, . . .)
or using an external graph visualization and exploration tool like Gephi13 [15].
Fig. 3 depicts part of such learned Moore machine where states are labelled with
modes and transitions with keystrokes.

After inspection and querying we either modify the set of keystrokes and/or
Neovim’s customization and repeat the learning process; or we find a behavior
in the Moore machine requiring further investigation. Such behavior typically
consists of one or two short sequences of keystrokes whose resulting modes cannot
be explained clearly following the Neovim’s documentation. If the unexplained
behavior is reproducible in Vim by manually typing the sequences of keystrokes,
then we submit an issue to the Vim developers. For instance, according to the
documentation, ctrl + v and ctrl + q behave the same in insert and replace

mode. When learning a Moore machine with a set of keystrokes including ctrl

+ v and ctrl + q , it turned out that ctrl + v labeled transitions and ctrl +

q labeled transitions leaving the same state ended up in different states. After
reproducing and reporting the issue in Vim, the developers fixed it promptly [2].

In general, the reactions to the issue largely vary: convincingly arguing the
behavior is not an issue [7,12]; acknowledging a problem in the documentation
[8]; acknowledging a problem in Vim’s behavior but not fixing it ([9] at first);
acknowledging a problem in Vim’s behavior and fixing it [4,1,11,2,9,10]. On one
occasion, we fixed the issue ourselves after it was acknowledged [9]. Fixes are
typically one-liners and no more than 10 lines of code [11]. A comprehensive list
of issues acknowledged and fixed is given on the AALpy discussion thread page
New use of AALpy library14 on their GitHub repository.

13 https://github.com/gephi/gephi
14 https://github.com/DES-Lab/AALpy/discussions/13

https://github.com/gephi/gephi
https://github.com/DES-Lab/AALpy/discussions/13

Active Learning of a Modal Text Editor 7

5 Discussion

Active Learning and the Software Development Cycle. Both the Vim
and Neovim developers have been responsive and helpful when issues were sub-
mitted. As we stated in the introduction, the source code of Vim is battle-tested
and no issue we reported involved making the text editor unresponsive, mis-
handle data or let alone crash. Apart from acknowledged issues, the reaction
to our reporting ranged from confused15 to nobody cares16 and won’t fix17. We
captured the interest of some Neovim developers after showing them the Moore
machines. Together with them, we envisioned two potential uses: as a source of
documentation aimed at end users or as a formal specification of behaviors
to be tested between (major) releases. More precisely, a conformance testing
tool could become part of the software life cycle, where the Moore machine of a
release is used as a specification to test subsequent releases. Recall that a con-
formance testing tool runs a large number of tests arising from a given Moore
machine by following a strategy to order and select the tests. The above can be
implemented in a few lines of Python using AALpy.

Besides testing, we also claim that a Moore machine model provides valuable
information in case of refactoring. Case in point is the refactoring Neovim
carried out starting from the Vim code base and whose logic18 [5] leverages an
“input-driven state machine”. We claim that having computed some information
about such input-driven state machines helps with the code refactoring.

Enhancing the Model. As we mentioned above the larger the set of keystrokes,
the more time AALpy needs before returning a Moore machine. This is because
AALpy has to try more sequences of keystrokes the number of which grows
exponentially with the length of the sequence: with 3 keystrokes there are 3n

sequences of length n while with 10 keystrokes there are 10n sequences.

In (Neo)vim, there are some keystrokes that are supposed to have the same
effects on the mode. For instance, i enters insert mode from normal mode

and so does I , o and O (they differ in other aspects but not from the modal
point of view). So if the set of keystrokes already contains i adding o should
have a predictable effect on the returned Moore machine: for each edge labeled
with i from node s such that s is normal mode to some node t, there is another
edge from s to t with label o . Therefore, leveraging (Neo)vim’s documentation,
one can enrich the Moore machine after the active learning process by adding
edges as suggested above. The enriched Moore machine can then be used by
a conformance testing tool to test whether the enriched machine still conforms
with the implementation. Enriching the Moore machine is as simple as editing
its dot file, since the dot format is human-readable.

15 https://github.com/vim/vim/issues/13649#issuecomment-1847848471
16 https://github.com/vim/vim/pull/13001#issuecomment-1703925253
17 https://github.com/vim/vim/issues/12115#issuecomment-1483815493
18 https://github.com/neovim/neovim/tree/master/src/nvim#nvim-lifecycle

https://github.com/vim/vim/issues/13649#issuecomment-1847848471
https://github.com/vim/vim/pull/13001#issuecomment-1703925253
https://github.com/vim/vim/issues/12115#issuecomment-1483815493
https://github.com/neovim/neovim/tree/master/src/nvim#nvim-lifecycle

8 P. Ganty

Acknowledgments. We thank Xiao Peng Ye, Madeleine Mathieu and for their
tremendous help with the interface and uncovering bugs. We also thank the Vim and
Neovim developers for their time including Bram Moolenaar, the creator of Vim, who
died during the summer 2023. Furthermore, we thank Edi Muskardin for his tremendous
help with AALpy. Finally, we thank the SPIN reviewers for their effort and suggestions.

This publication is part of the grant PID2022-138072OB-I00, funded by
MCIN, FEDER, UE. This work has been partially supported by the PRODIGY Project
(TED2021-132464B-I00) funded by MCIN and the European Union NextGeneration.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

1. Consecutive call of nvim get mode() does not return the same mode · Issue
#15288 · neovim/neovim — github.com. https://github.com/neovim/neovim/
issues/15288, [Accessed 05-01-2024]

2. Different behavior between C-v and C-q · Issue #12684 · vim/vim — github.com.
https://github.com/vim/vim/issues/12684, [Accessed 05-01-2024]

3. GitHub - pierreganty/active-learning-neovim: Active automata-based learning
of the Moore machine underlying Neovim — github.com. https://github.com/
pierreganty/active-learning-neovim, [Accessed 10-01-2024]

4. Non deterministic behavior when querying current mode · Issue #8323 · vim/vim
— github.com. https://github.com/vim/vim/issues/8323, [Accessed 05-01-2024]

5. Nvim lifecycle · neovim/neovim — github.com. https://github.com/neovim/
neovim/tree/master/src/nvim#nvim-lifecycle, [Accessed 05-01-2024]

6. nvim get mode waits 3∼4 secs with ‘showmode’ enabled or when there are er-
ror messages · Issue #19352 · neovim/neovim — github.com. https://github.com/
neovim/neovim/issues/19352, [Accessed 05-01-2024]

7. Possible inconsistent behavior · Issue #8346 · vim/vim — github.com. https://
github.com/vim/vim/issues/8346, [Accessed 05-01-2024]

8. Possibly inconsistent behavior · Issue #13649 · vim/vim — github.com. https:
//github.com/vim/vim/issues/13649, [Accessed 05-01-2024]

9. Possibly incorrect transitions between modes · Issue #12115 · vim/vim —
github.com. https://github.com/vim/vim/issues/12115, [Accessed 05-01-2024]

10. Possibly undocumented behavior with replace after visual · Issue #13091 · vim/vim
— github.com. https://github.com/vim/vim/issues/13091, [Accessed 05-01-2024]

11. Undocumented (possibly incorrect) behavior for Virtual Replace mode · Issue
#12045 · vim/vim — github.com. https://github.com/vim/vim/issues/12045, [Ac-
cessed 05-01-2024]

12. Unexpected behavior? · Issue #10693 · vim/vim — github.com. https://github.
com/vim/vim/issues/10693, [Accessed 05-01-2024]

13. Automata Wiki — automata.cs.ru.nl. https://automata.cs.ru.nl/ (2017), [Accessed
05-01-2024]

14. Angluin, D.: Learning regular sets from queries and counterexamples. Infor-
mation and Computation 75(2), 87–106 (Nov 1987). https://doi.org/10.1016/
0890-5401(87)90052-6

https://github.com/neovim/neovim/issues/15288
https://github.com/neovim/neovim/issues/15288
https://github.com/vim/vim/issues/12684
https://github.com/pierreganty/active-learning-neovim
https://github.com/pierreganty/active-learning-neovim
https://github.com/vim/vim/issues/8323
https://github.com/neovim/neovim/tree/master/src/nvim#nvim-lifecycle
https://github.com/neovim/neovim/tree/master/src/nvim#nvim-lifecycle
https://github.com/neovim/neovim/issues/19352
https://github.com/neovim/neovim/issues/19352
https://github.com/vim/vim/issues/8346
https://github.com/vim/vim/issues/8346
https://github.com/vim/vim/issues/13649
https://github.com/vim/vim/issues/13649
https://github.com/vim/vim/issues/12115
https://github.com/vim/vim/issues/13091
https://github.com/vim/vim/issues/12045
https://github.com/vim/vim/issues/10693
https://github.com/vim/vim/issues/10693
https://automata.cs.ru.nl/
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6

Active Learning of a Modal Text Editor 9

15. Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for explor-
ing and manipulating networks. Proceedings of the International AAAI Conference
on Web and Social Media 3(1), 361–362 (2009). https://doi.org/10.1609/icwsm.
v3i1.13937

16. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Softw. Pract. Exper. 30(11), 1203–1233 (2000)

17. Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: An
active automata learning library. Innovations in Systems and Software Engineering
18(3), 417–426 (Sep 2022). https://doi.org/10.1007/s11334-022-00449-3

18. Muškardin, E., Aichernig, B.K., Pill, I., Tappler, M.: Learning finite state models
from recurrent neural networks. In: Integrated Formal Methods. p. 229–248. LNCS,
Springer (2022). https://doi.org/10.1007/978-3-031-07727-2 13

19. Parker, D.: Vim Modes Transition Diagram in SVG. https://gist.github.com/
darcyparker/1886716 (2012), [Accessed 05-01-2024]

20. Pezzi, G.: Understanding the Origins and the Evolution of Vi & Vim. https://
pikuma.com/blog/origins-of-vim-text-editor (2023), [Accessed 05-01-2024]

21. Pferscher, A., Aichernig, B.K.: Fingerprinting bluetooth low energy devices via ac-
tive automata learning. In: FM 2021: Formal Methods. p. 524–542. LNCS, Springer
(2021). https://doi.org/10.1007/978-3-030-90870-6 28

22. Pferscher, A., Wunderling, B., Aichernig, B.K., Muškardin, E.: Mining digital twins
of a VPN server. In: FMDT 2023: Proceedings of the Workshop on Applications
of Formal Methods and Digital Twins. CEUR Workshop Proceedings, vol. 3507
(2023)

23. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing iot communication
via active automata learning. In: ICST 2017: IEEE International Conference on
Software Testing, Verification and Validation. IEEE (2017). https://doi.org/10.
1109/icst.2017.32

24. Vaandrager, F.: Model Learning. Commun. ACM 60(2), 86–95 (Jan 2017). https:
//doi.org/10.1145/2967606

https://doi.org/10.1609/icwsm.v3i1.13937
https://doi.org/10.1609/icwsm.v3i1.13937
https://doi.org/10.1609/icwsm.v3i1.13937
https://doi.org/10.1609/icwsm.v3i1.13937
https://doi.org/10.1007/s11334-022-00449-3
https://doi.org/10.1007/s11334-022-00449-3
https://doi.org/10.1007/978-3-031-07727-2_13
https://doi.org/10.1007/978-3-031-07727-2_13
https://gist.github.com/darcyparker/1886716
https://gist.github.com/darcyparker/1886716
https://pikuma.com/blog/origins-of-vim-text-editor
https://pikuma.com/blog/origins-of-vim-text-editor
https://doi.org/10.1007/978-3-030-90870-6_28
https://doi.org/10.1007/978-3-030-90870-6_28
https://doi.org/10.1109/icst.2017.32
https://doi.org/10.1109/icst.2017.32
https://doi.org/10.1109/icst.2017.32
https://doi.org/10.1109/icst.2017.32
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606

	Learning the State Machine Behind a Modal Text Editor: The (Neo)Vim Case Study

